A scientific article entitled Photovoltaic System, by Israa Hussein Amwishi Date: 29/03/2024 | Views: 76

Share in :

APhotovoltic system:a special electrical system that produces energy from a renewable and inexhaustible source: the sun.
 
Essentially, there are two types of photovoltaic systems:
Grid-connected systems are systems that are integrated with conventional residential and industrial electricity systems. These can be used when required in alternation or in combination with the electricity grid in order to meet the energy requirements of the end user.Stand alone systems are designed in such a way as to include a battery system in order to ensure “service continuity”, i.e. the supply of electric energy also during the night or when the level of solar irradiation is insufficient or absent.
A photovoltaic (PV) panel, commonly called a solar panel, contains PV cells that absorb the sun’s light and convert solar energy into electricity. These cells, made of a semiconductor that transmits energy (such as silicon), are strung together to create a module. A typical rooftop solar panel has 30 modules. When the semiconductor in the photovoltaic panels absorbs the sunlight, this knocks the electrons (which form the basis of electricity) free from their place, and they can now flow through the semiconductor. These dislodged electrons, each carrying a negative charge, flow across the cell toward the front surface, creating an imbalance in charge between the front and the back. Photovoltaic cells produce electricity because this imbalance, in turn, creates a voltage potential like the negative and positive terminals of a battery.
Solar photovoltaic systems: what's the difference between an industrial and a residential one?
Industrial and residential solar panels for businesses and homes use the same technology. That said, there are a few main differences. 
Size: a residential panel is typically smaller, and will generate less power because it serves fewer people. An average panel for the home will have 72 cells. while a commercial panel will be wider, and have 96 cells. The price of a panel is calculated by the amount of power it produces, and not its size. So a 10 kWH system for a home will cost the same as one of the same power for a business.Even though photovoltaic systems and solar thermal collectors have been in widespread use in Poland for quite some time, many prospective investors continue to confuse these two systems that are based on different operating principles. For many people, the popular solar panels and photovoltaics are the same thing – we will explain why this assumption is wrong.
In this article, we will focus on the similarities and – above all – the differences between photovoltaic technology and solar thermal collectors. Find out how the two systems work, learn the secrets of their design and operation, and discover which system is better: solar panels or photovoltaics
PV systems generate electricity from sunlight collected by solar panels. This energy can be used directly or stored in batteries.
PV systems have been successfully deployed all over the world for decades in a variety of applications, including power for remote weather stations and telecommunications towers, residential installations, community micro-grids, and grid-scale power plants. Perhaps the greatest advantage of PV technology in meeting such a wide range of applications is scalability. PV systems can be designed to meet nearly any power requirements and can work in conjunction with diesel generators, the grid, battery banks, or any other power source to provide stable, continuous power.
A successful PV installation will provide power for more than 20 years with no fuel costs and little maintenance. When compared to diesel generation in particular, PV is a cost-competitive option, especially in the developing world where electricity and diesel prices are often high. Although PV technology is an appropriate choice for many applications in the developing world, high capital costs and poor installation and maintenance practices have been limiting factors in the overall deployment of photovoltaics. The discussion of photovoltaic systems in this document is meant to convey basic information on PV technology as well as best practices in the design and implementation of such systems, especially in the context of health facilities in the developing world.Photovoltaic systems are made up of much more than just PV solar panels. There are a whole range of other system components, referred to as the balance of system (BOS), which include inverters, combiner boxes, wiring, mounting/racking, battery banks, etc. While these are major PV system components, the list is not exhaustive. An installed system will likely involve other minor components. The makeup of any PV system depends on the type of load it powers and, more importantly, whether it is connected to the grid.The costs associated with a solar PV system are generally put into terms of the system’s capital cost, and the cost of energy produced by the system over its life. Only a portion of this cost can be attributed to the PV panels. The remaining costs are for BOS materials (mounting hardware, inverters, batteries, etc.), engineering design, labor, and other materials and services. If the system has no other backup power, a battery bank must be sized appropriately to provide power after several days of overcast weather; therefore, local weather patterns can influence overall system cost. Unusual expenses such as transportation of modules, customs fees, and permitting expenses can increase this cost even further.Solar PV panels are low maintenance, but a regular and organized maintenance program is still absolutely essential to system longevity. The panels themselves typically have a very long lifetime, 20–30 years. Unfortunately, installation programs do not always include a sufficient service component. Health facilities with solar panels must have a vigorous training program for local users and an established maintenance protocol.