Mathematic

Revision:

1. Trigonometric Function and Cartesian coordinate.
2. Equation of circle and straight line.
3. Distance from point to line.
4. Function and Graphs.
5. Domain and Range.
6. Inverse of function.
7. Limits and their properties, definition and theory.
8. Differentiation (definition and rules).
9. Differentiation of trigonometric and hyperbolic functions.
10. Differentiation and Integration of inverse trigonometric functions.
11. Differentiation and Integration of hyperbolic functions
12. Integration
13.derivative of natural logarithm, exponential and a^{x} functions.

Mathematics (I)
Al-mustaqbal University Collage
Dr. Alaa Mohammed Hussein Wais

1. Trigonometric Function

RIGHT ANGLE TRIGONOMETRY
$\sin \theta=\frac{\text { opp }}{\text { hyp }} \quad \csc \theta=\frac{\text { hyp }}{\text { opp }}$
$\cos \theta=\frac{\text { adj }}{\text { hyp }}$
$\sec \theta=\frac{\text { hyp }}{\text { adj }}$

$\tan \theta=\frac{\text { opp }}{\text { adj }} \quad \cot \theta=\frac{\text { adj }}{\text { opp }}$

TRIGONOMETRIC FUNCTIONS

$\sin \theta=\frac{y}{r} \quad \csc \theta=\frac{r}{y}$
$\cos \theta=\frac{x}{r} \quad \sec \theta=\frac{r}{x}$
$\tan \theta=\frac{y}{x} \quad \cot \theta=\frac{x}{y}$

FUNDAMENTAL IDENTITIES

$$
\begin{array}{ll}
\csc \theta=\frac{1}{\sin \theta} & \sec \theta=\frac{1}{\cos \theta} \\
\tan \theta=\frac{\sin \theta}{\cos \theta} & \cot \theta=\frac{\cos \theta}{\sin \theta} \\
\cot \theta=\frac{1}{\tan \theta} & \sin ^{2} \theta+\cos ^{2} \theta=1 \\
1+\tan ^{2} \theta=\sec ^{2} \theta & 1+\cot ^{2} \theta=\csc ^{2} \theta \\
\sin (-\theta)=-\sin \theta & \cos (-\theta)=\cos \theta \\
\tan (-\theta)=-\tan \theta & \sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta \\
\cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta & \tan \left(\frac{\pi}{2}-\theta\right)=\cot \theta
\end{array}
$$

Mathematics (I)
Al-mustaqbal University Collage
Dr. Alaa Mohammed Hussein Wais

```
cos(A\pmB)=\operatorname{cos}A\cdot\operatorname{cos}B\mp\operatorname{sin}A.\operatorname{Sin}B\ldots\ldots
sin}(A\pmB)=\operatorname{sin}A\cdot\operatorname{cos}B\pm\operatorname{cos}A\cdot\operatorname{sin}B\ldots+
```

Double angle formula:

$$
\begin{aligned}
& \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta \\
& \sin 2 \theta=2 \sin \theta \cdot \cos \theta
\end{aligned}
$$

2. Equation of circle and straight line.

Circle equation.

To find an equation of the circle with radius (r) and center $(h$, k), by definition, the circle is the set of all points $P(x, y)$ whose distance from the center $C \quad(h, k)$ is r.

$$
\begin{gathered}
(x-h)^{2}+(y-k)^{2}=r^{2} \\
x^{2}+y^{2}=r^{2} \text { At the center origin point }
\end{gathered}
$$

Example 1: Find the radius and the coordinate of the center of the equation.

$$
x^{2}+y^{2}+2 x+2 y-4=0
$$

Solution//

$$
\begin{gathered}
x^{2}+2 x+1-1+y^{2}+2 y+1-1-4=0 \\
(x+1)^{2}+(y+1)^{2}=6 \leftrightarrow(x-h)^{2}+(y-k)^{2}=r^{2} \\
\rightarrow \mathrm{~h}=-1, \mathrm{k}=-1, \mathrm{r}=\sqrt[2]{6} \\
4
\end{gathered}
$$

Dr. Alaa Mohammed Hussein Wais

Equation of straight line

The equation of the line through the point(x, y)with slope(m)is:-

$$
\begin{aligned}
& y-y_{l}=m\left(x-x_{l}\right) \\
& m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{aligned}
$$
 PaRallel and Perpendicular lines}

I. Two nonvertical lines are parallel if and only if they have the same slope.
2. Two lines with slopes m_{1} and m_{2} are perpendicular if and only if $m_{1} m_{2}=-1$; that is, their slopes are negative reciprocals:

$$
m_{2}=-\frac{1}{m_{1}}
$$

Example 1: Find the equation of the line passes through the points $p_{1}(4,6)$ and $p_{2}(6,10)$.
Solution//

$$
\begin{gathered}
m=\frac{\Delta y}{\Delta x}=\frac{10-6}{6-4}=2 \\
y-y_{l}=m\left(x-x_{l}\right) \Longrightarrow y-6=2(x-4) \quad y \mathrm{y}=2 \mathrm{x}-2
\end{gathered}
$$

Example 2: Find the equation of the line tangent to the curve $y=x^{3}-3 x-3$ at the point $(0,3)$.
Solution//

$$
\begin{array}{r}
\mathrm{m}=\frac{d y}{d x}=3 x^{2}-3 \text { at }(0,3) \Longrightarrow \mathrm{m}=-3 \\
\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right) \Longrightarrow \\
\Longrightarrow \mathrm{y}-3=-3(\mathrm{x}-0) \Longrightarrow \mathrm{y}-3=-3 \mathrm{x}
\end{array}
$$

3.Distance from point to line:-

The distance between points in the plain is calculated with a formula that's comes from the Pythagorean Theorem.

$$
\begin{aligned}
& d=\sqrt{\left|x_{2}-x_{1}\right|^{2}+\left|y_{2}-y_{1}\right|^{2}} \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& d=\sqrt{\Delta x^{2}+\Delta y^{2}}
\end{aligned}
$$

Example 1: Find the distance between the line $y=3 x-2$ and the point (1,3).

Solution//

$$
\begin{gathered}
m_{1}=3 \rightarrow m_{2}=(-1 / \mathrm{m} 1)=-1 / 3 \\
y-y_{1}=m\left(x-x_{1}\right) \rightarrow y-3=-\frac{1}{3}(x-1) \\
\rightarrow y=-\frac{1}{3} x+\frac{1}{3}+3 \\
\rightarrow y=-\frac{1}{3} x+\frac{10}{3} \\
\text { At } \mathrm{y}=3 \mathrm{x}-2 \rightarrow 3 x-2=-\frac{1}{3} x+\frac{10}{3} \\
\rightarrow 9 \mathrm{x}-6=-\mathrm{x}+10 \rightarrow \mathrm{x}=\frac{8}{5} \\
\rightarrow y=-\frac{1}{3} * \frac{8}{5}+\frac{10}{3} \\
\rightarrow \mathrm{y}=\frac{14}{5} \\
d=\sqrt{(\mathrm{x} 2-\mathrm{x} 1)^{2}+(\mathrm{y} 2-\mathrm{y} 1)^{2}} \\
d=\sqrt{\left(\frac{8}{5}-1\right)^{2}+\left(\frac{14}{5}-3\right)^{2}} \rightarrow d=\frac{\sqrt{10}}{5}
\end{gathered}
$$

