Dr. Alaa Mohammed Hussein Wais

3.Complex Number.

Complex Numbers

Definitions.

$$
\begin{aligned}
\text { Let } i^{2} & =-1 . \\
\therefore i & =\sqrt{-1} .
\end{aligned}
$$

Complex numbers are often denoted by z.
Just as \mathbb{R} is the set of real numbers, \mathbb{C} is the set of complex numbers. If z is a complex number, z is of the form

$$
z=x+i y \in \mathbb{C}, \text { for some } x, y \in \mathbb{R}
$$

e.g. $3+4 i$ is a complex number.

$$
\text { If } z=x+i y, x, y \in \mathbb{R}
$$

the real part of $z=\Re(z)=\operatorname{Re}(z)=x$ the imaginary part of $z=\Im(z)=\operatorname{Im}(z)=y$.
eg. $z=3+4 i$
$\Re(z)=3$
$\Im(z)=4$.

Example// Express each of the following in terms of i.

1. $\sqrt{-25} \rightarrow \sqrt{25 i^{2}}=5 i$
2. $\sqrt{-12}-\sqrt{-3} \rightarrow \sqrt{12 i^{2}}-\sqrt{3 i^{2}}=2 \sqrt{3} i-\sqrt{3} i=\sqrt{3} i$
3. $-2+\sqrt{-4} \rightarrow-2+\sqrt{4 i^{2}}=-2+2 i$

Operation of complex number:-

ADDITION OF COMPLEX NUMBERS

$$
(a+b i)+(c+d i)=(a+c)+(b+d) i
$$

SUBTRACTION OF COMPLEX NUMBERS

$$
(a+b i)-(c+d i)=(a-c)+(b-d) i
$$

MULTIPLICATION OF COMPLEX NUMBERS

$$
(a+b i)(c+d i)=(a c-b d)+(a d+b c) i
$$

DIVISION OF COMPLEX NUMBERS

$$
\frac{a+b i}{c+d i}=\frac{a+b i}{c+d i} \cdot \frac{c-d i}{c-d i}=\frac{a c+b d}{c^{2}+d^{2}}+\left(\frac{b c-a d}{c^{2}+d^{2}}\right) i
$$

Example 1. $(2+3 i)+(4+i)=6+4 i$.
Example 2. $(8-3 i)-(-2+4 i)=10-7 i$.
Multiplication/Division.

Example 1. $(2+3 i)(1+2 i)=2+4 i+3 i-6=-4+7 i$
Example 2. $(3-2 i)(3+2 i)=9-(2 i)^{2}=9+4=13$
\therefore when we multiply two complex conjugates, we get a real number.
Example 3. $\frac{2+3 i}{1+4 i}=\frac{2+3 i}{1+4 i} \times \frac{1-4 i}{1-4 i}=\frac{(2+3 i)(1-4 i)}{(1+4 i)(1-4 i)}=\frac{2-8 i+3 i-12 i^{2}}{1-(4 i)^{2}}=\frac{14-5 i}{17}$

ABSOLUTE VALUE

The absolute value or modulus of a complex number $a+b i$ is defined as $|a+b i|=$ $\sqrt{a^{2}+b^{2}}$.

Example: $|-4+2 i|=\sqrt{(-4)^{2}+(2)^{2}}=\sqrt{20}=2 \sqrt{5}$
If $z_{1}, z_{2}, z_{3}, \ldots, z_{m}$ are complex numbers, the following properties hold.

1. $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
2. $\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$
3. $\left|z_{1}+z_{2}\right| \leqq\left|z_{1}\right|+\left|z_{2}\right|$
4. $\left|z_{1}+z_{2}\right| \geqq\left|z_{1}\right|-\left|z_{2}\right|$

$$
\begin{aligned}
& \text { Example//show that }|Z 1 \cdot Z 2|=|Z 1| \cdot|Z 2| \\
& \text { Solution// } \\
& \text { Let } z_{1}=a_{1}+b_{1} i, z_{2}=a_{2}+b_{2} \mathrm{i} \\
& \quad|(\mathrm{a} 1+\mathrm{b} 1 \mathrm{i}) \cdot(\mathrm{a} 2+\mathrm{b} 2 \mathrm{i})|=|(\mathrm{a} 1 \mathrm{a} 2-\mathrm{b} 1 \mathrm{~b} 2)+(\mathrm{a} 1 \mathrm{~b} 2+\mathrm{b} 1 \mathrm{a} 2) \mathrm{i}| \\
& =\sqrt{(a 1 a 2-b 1 b 2)^{2}+(b 2 a 1+b 1 a 2)^{2}} \\
& \sqrt{\left(a 1^{2} a 2^{2}-2 a 1 a 2 b 1 b 2+b 1^{2} b 2^{2}+a 1^{2} b 2^{2}+2 a 1 a 2 b 1 b 2+b 1^{2} a 2^{2}\right)} \\
& \left.\sqrt{\left(a 1^{2} a 2^{2}+b 1^{2} b 2^{2}+a 1^{2} b 2^{2}+b 1^{2} a 2^{2}\right.}\right) \\
& \text { While }|Z 1| \cdot|Z 2|=|a 1+b 1 i| \cdot|a 2+b 2 i| \\
& =\sqrt{a 1^{2}+b 1^{2}} \cdot \sqrt{a 2^{2}+b 2^{2}} \\
& \left.=\sqrt{\left(a 1^{2} a 2^{2}+b 1^{2} b 2^{2}+a 1^{2} b 2^{2}+b 1^{2} a 2^{2}\right.}\right)
\end{aligned}
$$

POLAR FORM OF COMPLEX NUMBERS

If P is a point in the complex plane corresponding to the complex number (x, y) or $x+i y$,

where $r=\sqrt{x^{2}+y^{2}}=|x+i y|$ is called the modulus or absolute value of $z=x+i y$ [denoted by $\bmod z$ or $|z|]$; and θ, called the amplitude or argument of $z=x+i y$ [denoted by $\arg z$], is the angle which line $O P$ makes with the positive x axis.

It follows that

$$
\begin{equation*}
z=x+i y=r(\cos \theta+i \sin \theta) \tag{1}
\end{equation*}
$$

which is called the polar form of the complex number, and r and θ are called polar coordinates. It is sometimes convenient to write the abbreviation $\operatorname{cis} \theta$ for $\cos \theta+i \sin \theta$.

Dr. Alan Mohamed Hussein Wais

$$
x=7 \leq 4 \leq y=75+5
$$

Example// Express the polar form of $3+3 \mathbf{i}$.
Solution/ $z=3+3 \mathrm{i}=\mathrm{r}[\cos \theta+i \sin \theta]$
$\mathrm{X}=r \cos \theta=3, y=r \sin \theta=3$
$r=\sqrt{x^{2}+y^{2}}=\sqrt{3^{2}+3^{2}}=\sqrt{18}= \pm 3 \sqrt{2}$
$\mathrm{X}=r \cos \theta \rightarrow 3=3 \sqrt{2} \cos \theta \rightarrow \theta=45$
$\mathrm{z}=3+3 \mathrm{i}=3 \sqrt{2}\left[\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right]$

$$
A=\cos t-\operatorname{tin} x_{1}-A_{1}^{-1}=\cos -\operatorname{cin} \theta
$$

Eulers theorem :-

$$
\left.e^{i \theta}=(\cos \theta+i \sin \theta)\right] * r
$$

$$
r e^{i \theta}=r(\cos \theta+i \sin \theta) \ldots1
$$

$$
r e^{-i \theta}=r(\cos \theta+i \sin \theta) \ldots \ldots . . .
$$

Adding 1 and 2

$$
\begin{aligned}
r e^{i \theta}+r e^{-i \theta}=2 r \cos & \rightarrow \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2} \text { sub in1 } \\
& \rightarrow \sin \theta=\frac{e^{i \theta}+e^{-i \theta}}{2 i}
\end{aligned}
$$

Example// show that $\cos ^{2} \theta+\sin ^{2} \theta=1$

Solution //

$$
\begin{gathered}
\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}, \sin \theta=\frac{e^{i \theta}+e^{-i \theta}}{2 i} \\
\cos ^{2} \theta+\sin ^{2} \theta=\frac{e^{2 i \theta}}{4}+e^{0}+\frac{e^{-2 i \theta}}{4}+\frac{-e^{-2 i \theta}}{4}+e^{0}+\frac{-e^{-2 i \theta}}{4} \\
e^{0}+e^{0}=1+1=2
\end{gathered}
$$

