Republic of Iraq

Ministry of Higher Education and Scientific Research
Al-Mustaqbal University College

Computer Engineering Techniques Department

Subject: Digital Signal Processing
 Third Class

 Lecture Three

 Lecture Three}

By

Standard of discrete Time signals (sequences)

a- Unit impulse sequences
The discrete-time counterpart for the continuous-time unit impulse (delta function) is the discrete-time unit impulse. It is defined as:

$$
\delta(n)= \begin{cases}1, & n=0 \\ 0, & n \neq 0\end{cases}
$$

Or

$$
\delta(n)=\{\ldots \ldots, 0,0,0, \underline{1}, 0,0,0, \ldots .\}
$$

Or

$$
\delta[n]=u[n]-u[n-1]
$$

b- Unit step sequences
The unit step sequence is one that has an amplitude of zero for negative indices and an amplitude of one for non-negative indices. Its definition is:

Or
Or

$$
\begin{aligned}
& u(n)= \begin{cases}1, & n \geq 0 \\
0, & n<0\end{cases} \\
& u(n)=\{\ldots ., 0,0,1,1,1,1,1, \ldots \ldots\} \\
& u(n)=\sum_{k=0}^{\infty} \delta(n-k)
\end{aligned}
$$

c- Ramp sequences.
It is defined by:

$$
u_{r}(n)= \begin{cases}n, & n \geq 0 \\ 0, & n<0\end{cases}
$$

d- Exponential sequences.
Finally, an exponential sequence is defined by

$$
x[n]=a^{n} \quad \text { for all } n
$$

where \boldsymbol{a} may be real or complex number.

Classification of Discrete time signals

a- Periodic and Aperiodic Sequences

A discrete-time signal may always be classified as either being periodic or aperiodic. A signal $\mathrm{x}(\mathrm{n})$ is said to be periodic if, for some positive real integer N ,

$$
x(n)=x(n+N) \text { for all } n
$$

This is equivalent to saying that the sequence repeats itself every N samples. If is not satisfied for any integer $\mathrm{N}, \mathrm{x}(\mathrm{n})$ is said to be an aperiodic signal. The sinusoidal signal of the form

$$
x(n)=A \sin 2 \pi f_{0} n
$$

Is periodic when f_{0} is a rational number, that is, if f_{0} can be expressed as

$$
f_{0}=\frac{k}{N}
$$

Where k and N are integers

Example . Is $x(n)=\cos \left(\frac{\pi n}{8}\right)$ periodic? If so, what is the period?
Sol: The sequence can be expressed as

$$
x(n)=\cos \left(2 \pi \frac{1}{16} n\right)
$$

So in this case, $f_{0}=1 / 16$ is a rational number and the sinusoidal sequence is periodic with a period $\mathrm{N}=16$.

Example 2: Determine whether or not each of the following signals is periodic. If a signal is periodic, determine its fundamental period.
(a) $x[n]=e^{j(\pi / 4) n}$
(b) $x[n]=\cos \frac{\pi}{3} n+\sin \frac{\pi}{4} n$
(c) $x[n]=\cos \frac{1}{4} n$

Sol:

(a) $x[n]=e^{j\left(\frac{\pi}{4}\right) n}=e^{j 2 \pi f_{0} n} \quad \rightarrow \quad 2 \pi f_{0}=\frac{\pi}{4}$

Since $f_{0}=1 / 8$ is a rational number, $\mathrm{x}[\mathrm{n}]$ is periodic, the fundimantail period is $\mathrm{N}=8$
(b) $x[n]=\cos \frac{\pi}{3} n+\sin \frac{\pi}{4} n=x_{1}[n]+x_{2}[n]$

Where

$$
\begin{array}{lll}
x_{1}[n]=\cos \frac{\pi}{3} n & \rightarrow & 2 \pi f_{0}=\frac{\pi}{3} \\
x_{2}[n]=\cos \frac{\pi}{4} n & \rightarrow & 2 \pi f_{0}=\frac{\pi}{4}
\end{array}
$$

Since $f_{1}=1 / 6$ is a rational number, $x_{1}[\mathrm{n}]$ is periodic, the fundamental period is $\mathrm{N}_{1}=6$, and Since $f_{2}=1 / 8$ is a rational number, $\mathrm{x}[\mathrm{n}]$ is periodic, the fundamental period is $\mathrm{N}=8$. Thus, $\mathrm{x}[\mathrm{n}]$ is periodic and its fundamental period is given by the least common multiple of 6 and 8 , that is $\mathrm{N}=24$

$$
\text { (c) } x[n]=\cos \frac{1}{4} n \quad \rightarrow \quad 2 \pi f_{0}=\frac{1}{4}
$$

Since $f_{0}=1 / 8 \pi$ is not a rational number, $\mathrm{x}[\mathrm{n}]$ is aperiodic.

