Matrix Algebra

1. Introduction

There are a number of common situations in chemical engineering where systems of linear equations appear. There are at least three ways in MATLAB for solving these system of equations;
(1) using matrix algebra commands (Also called matrix inverse or Gaussian Elimination method)
(2) using the solve command (have been discussed).
(3) using the numerical equation solver.

The first method is the preferred, therefore we will explained and demonstrated it. Remember, you always should work in an m-file.

2. Solving Linear Equations Using Matrix Algebra

One of the most common applications of matrix algebra occurs in the solution of linear simultaneous equations. Consider a set of n equations in which the unknowns are x_{1}, X_{2}, \qquad X_{n}.
$a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+$ $\mathrm{a}_{1 \mathrm{n}} \mathrm{X}_{\mathrm{n}}=\mathrm{b}_{1}$
$a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+$
$+\ldots \ldots \ldots \ldots \ldots . a_{2 n} x_{n}=b_{2}$
$a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+$ \qquad $\mathrm{a}_{3 \mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{3}$
$a_{n 1} X_{1}+a_{n 2} X_{2}+a_{n 3} X_{3}+$ \qquad $\mathrm{a}_{\mathrm{nn}} \mathrm{X}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}$
where
x_{j} is the $j^{\text {th }}$ variable.
$a_{i j}$ is the constant coefficient of the $j^{\text {th }}$ variable in the $i^{\text {th }}$ equation.
b_{j} is constant "right-hand-side" coefficient for equation i.

The system of equations given above can be expressed in the matrix form as.
$\left[\begin{array}{ccccc}a_{11} & a_{12} & a_{13} & : & a_{1 n} \\ a_{21} & a_{22} & a_{23} & : & : \\ : & : & : & : & : \\ : & : & : & : & : \\ a_{n 1} & a_{n 2} & a_{n 3} & : & a_{n n}\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{n} \\ x_{3} \\ : \\ b_{n}\end{array}\right]=\left[\begin{array}{c}b_{1} \\ b_{2} \\ b_{3} \\ : \\ b_{n}\end{array}\right.$
Or
$\mathrm{AX}=\mathrm{b}$

Where

$$
\mathrm{A}=\left[\begin{array}{ccccc}
\mathrm{a}_{11} & \mathrm{a}_{12} & a_{13} & : & a_{1 \mathrm{n}} \\
\mathrm{a}_{21} & \mathrm{a}_{22} & \mathrm{a}_{23} & : & a_{2 n} \\
: & : & : & : & : \\
: & : & : & : & : \\
a_{\mathrm{n} 1} & a_{n 2} & a_{n 3} & : & a_{n \mathrm{n}}
\end{array}\right] \quad \mathrm{b}=\left[\begin{array}{c}
\mathrm{b}_{1} \\
\mathrm{~b}_{2} \\
\mathrm{~b}_{3} \\
: \\
\mathrm{b}_{\mathrm{n}}
\end{array}\right] \quad \mathrm{X}=\left[\begin{array}{c}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\mathrm{x}_{3} \\
: \\
\mathrm{x}_{\mathrm{n}}
\end{array}\right]
$$

To determine the variables contained in the column vector ' x ', complete the following steps.
(a) Create the coefficient matrix ' A '. Remember to include zeroes where an equation doesn't contain a variable.
(b) Create the right-hand-side column vector ' b ' containing the constant terms from the equation. This must be a column vector, not a row.
(c) Calculate the values in the ' x ' vector by left dividing ' b ' by ' A ', by typing $\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$. Note: this is different from $x=b / A$.

As an example of solving a system of equations using the matrix inverse method, consider the following system of three equations.
$x_{1}-4 x_{2}+3 x_{3}=-7$
$3 \mathrm{x}_{1}+\mathrm{x}_{2}-2 \mathrm{x}_{3}=14$
$2 \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=5$
These equations can be written in matrix format as;
$\left[\begin{array}{ccc}1 & -4 & 3 \\ 3 & 1 & -2 \\ 2 & 1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}-7 \\ 14 \\ 5\end{array}\right]$
To find the solution of the following system of equations type the code.
$A=[1,-4,3 ; 3,1,-2 ; 2,1,1]$
$B=[-7 ; 14 ; 5]$
$x=A \backslash B$
the results will be results in

$$
\begin{gathered}
x=[3 \\
1 \\
-2]
\end{gathered}
$$

in which $x_{1}=3, x_{2}=1, x_{3}=-2$
to extract the value of each of x_{1}, x_{2}, x_{3} type the command:
$x 1=x(1), x 2=x(2), x 3=x(3)$
The results will be:

```
x1 =
    3
x2 =
    1
x3 =
    -2
```


Exercise 1:

For the following separation system, we know the inlet mass flow rate (in $\mathrm{Kg} / \mathrm{hr}$) and the mass fractions of each species in the inlet flow (F) and each outlet flow (F1, F2 and F3). We want to calculate the unknown mass flow rates of each outlet stream.

Solution:
If we define the unknowns as $\mathrm{x} 1=\mathrm{F} 1, \mathrm{x} 2=\mathrm{F} 2, \mathrm{x} 3=\mathrm{F} 3$ and set up the mass balances for

1. the total mass flow rate
$\mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3=10$
2. the mass balance on species 1
$0.04 \times 1+0.54 \times 2+0.26 \times 3=0.2 * 10$
3. the mass balance on species 2
$0.93 \times 1+0.24 \mathrm{X} 2=0.6 * 10$
These three equations can be written in matrix form
$\left[\begin{array}{ccc}1 & 1 & 1 \\ 0.04 & 0.54 & 0.26 \\ 0.93 & 0.24 & 0\end{array}\right]\left[\begin{array}{l}x 1 \\ x 2 \\ x 3\end{array}\right]=\left[\begin{array}{c}10 \\ 2 \\ 6\end{array}\right]$
To find the values of unknown flow rates write the code:
$A=[1,1,1 ; .04, .54, .26 ; .93, .24,0]$;
$B=[10 ; .2 * 10 ; .6 * 10] ;$
$X=A \backslash B ;$

$F 1=X(1), F 2=X(2), F 3=X(3)$
The results will be:
F1 =
5.8238

F2 =
2.4330

F3 =
1.7433

Exercise 2:

Write a program to calculate the values of $\mathrm{XA}, \mathrm{XB}, \mathrm{YA}, \mathrm{YB}, \mathrm{L}$ and V for the vapor liquid separator shown in fig.

If you know:
$\mathbf{X A}+\mathbf{X B}=1$
$Y A+Y B=1$
$Y A=K A * X A=1.9 X A$
$Y B=K B * X B=0.6 X B$

Solution:
$A=[1,1,0,0 ; 0,0,1,1 ;-1.9,0,1,0 ; 0,-0.6,0,1] ;$
$B=[1 ; 1 ; 0 ; 0]$;
$X=A \backslash B ;$
$x a=X(1), x b=X(2), y a=X(3), y b=X(4)$
a=[xa,ya;xb,yb];
$b=\left[.4 \star 100 ; .6^{\star} 100\right]$;
$\mathrm{x}=\mathrm{a} \backslash \mathrm{b}$;
$\mathrm{L}=\mathrm{x}(1), \mathrm{V}=\mathrm{x}(2)$
Gives the results
xa $=$
0.3077
xb $=$
0.6923
ya $=$
0.5846
$\mathrm{yb}=$
0.4154

L =
66.6667
$\mathrm{V}=$
33.3333

Exercise 3:

Xylene, styrene, toluene and benzene are to be separated with the array of distillation columns that is shown below. Write a program to calculate the amount of the streams D, B, D1, B1, D2 and B2 also to calculate the composition of streams D and B.

Figure Al Saparztion Train
Solution:
By making material balance on individual components on the overall separation train yield the equation set

Xylene: 0.07D1+0.18B1+0.15D2+0.24B2 $=0.15 \times 70$
Styrene: 0.04D1+0.24B1+0.10D2+0.65B2 $=0.25 \times 70$
Toluene: $0.54 \mathrm{D} 1+0.42 \mathrm{~B} 1+0.54 \mathrm{D} 2+0.10 \mathrm{~B} 2=0.40 \times 70$
Benzene: $0.35 \mathrm{D} 1+0.16 \mathrm{~B} 1+0.21 \mathrm{D} 2+0.01 \mathrm{~B} 2=0.20 \times 70$
Overall material balances and individual component balances on column 2 can be used to determine the molar flow rate and mole fractions from the equation of stream D .

Molar Flow Rates: $\mathrm{D}=\mathrm{D} 1+\mathrm{B} 1$
Xylene: XDxD = 0.07D1 + 0.18B1
Styrene: $\mathrm{XDsD}=0.04 \mathrm{D} 1+0.24 \mathrm{~B} 1$
Toluene: XDtD $=0.54 \mathrm{D} 1+0.42 \mathrm{~B} 1$
Benzene: XDbD = 0.35D $1+0.16 \mathrm{~B} 1$
where
$\mathrm{XDx}=$ mole fraction of Xylene.
XDs = mole fraction of Styrene.
$\mathrm{XDt}=$ mole fraction of Toluene.
$\mathrm{XDb}=$ mole fraction of Benzene.
Similarly, overall balances and individual component balances on column 3 can be used to determine the molar flow rate and mole fractions of stream B from the equation set.

Molar Flow Rates: $\mathrm{B}=\mathrm{D} 2+\mathrm{B} 2$
Xylene: $\mathrm{XBxB}=0.15 \mathrm{D} 2+0.24 \mathrm{~B} 2$
Styrene: $\mathrm{XBsB}=0.10 \mathrm{D} 2+0.65 \mathrm{~B} 2$
Toluene: $\mathrm{XBtB}=0.54 \mathrm{D} 2+0.10 \mathrm{~B} 2$
Benzene: $\mathrm{XBbB}=0.21 \mathrm{D} 2+0.01 \mathrm{~B} 2$
where $\mathrm{F}, \mathrm{D}, \mathrm{B}, \mathrm{D} 1, \mathrm{~B} 1, \mathrm{D} 2$ and B 2 are the molar flow rates in $\mathrm{mol} / \mathrm{min}$.
Now type the following code in command window
$A=[0.07,0.18,0.15,0.24 ; 0.04,0.24,0.10,0.65 ; 0.54,0.42,0.54,0.1 ; 0.35$, 0.16, 0.21, 0.01];
$B=[0.15 * 70 ; 0.25 * 70 ; 0.4 * 70 ; 0.2 * 70] ;$
$X=A \backslash B ;$
$\mathrm{D} 1=\mathrm{X}(1), \mathrm{B} 1=\mathrm{X}(2), \mathrm{D} 2=\mathrm{X}(3), \mathrm{B} 2=\mathrm{X}(4)$,
D=D1+B1
$B=D 2+B 2$
XDx=(.07*D1+.18*B1)/D
XDs=(.04*D1+.24*B1)/D
XDt=(.54*D1+.42*B1)/D
XDb=(.35*D1+.16*B1)/D
$X B x=\left(.15^{*} \mathrm{D} 2+.24 * B 2\right) / B$
XBs=(.1*D2+.65*B2)/B
$\mathrm{XBt}=\left(.54{ }^{*} \mathrm{D} 2+\right.$. 1*B2 $^{*} / \mathrm{B}$
$X B b=(.21 * D 2+.01 * B 2) / B$
The results will be
D1 =
26.2500

B1 =
17.5000

D2 =
8.7500

B2 =
17.5000

D =
$B=$
26.2500

XDx =
0.1140

XDs =
0.1200

XDt =
0.4920

XDb =
0.2740
$X B x=$
0.2100
$X B s=$
0.4667
$X B t=$
0.2467
$X B b=$
0.0767

Exercise 4:

Balance the following chemical equation:
$x 1 \mathrm{CH}_{4}+x 2 \mathrm{O}_{2} \rightarrow x 3 \mathrm{CO}_{2}+x 4 \mathrm{H}_{2} \mathrm{O}$
Solution:
There are three elements involved in this reaction: carbon (C), hydrogen (H), and oxygen (O). A balance equation can be written for each of these elements:

Carbon (C): $1 \cdot x 1+0 \cdot x 2=1 \cdot x 3+0 \cdot x 4$
Hydrogen (H): $4 \cdot x 1+0 \cdot x 2=0 \cdot x 3+2 \cdot x 4$
Oxygen (O): $0 \cdot x 1+2 \cdot x 2=2 \cdot x 3+1 \cdot x 4$
Re-write these as homogeneous equations, each having zero on its right hand side:
$x 1-x 3=0$
$4 x 1-2 x 4=0$
$2 x 2-2 x 3-x 4=0$
At this point, there are three equations in four unknowns. To complete the system, we define an auxiliary equation by arbitrarily choosing a value for one of the coefficients:
$x 4=1$
To solve these four equations write the code:
$A=[1,0,-1,0 ; 4,0,0,-2 ; 0,2,-2,-1 ; 0,0,0,1]$;
$B=[0 ; 0 ; 0 ; 1] ;$
$X=A \backslash B$

The result will be
$X=$
0.5000
1.0000
0.5000
1.0000

Finally, the stoichiometric coefficients are usually chosen to be integers.
Divide the vector X by its smallest value:
$X=X / m i n(X)$
$X=$
1
2
1
2
Thus, the balanced equation is
$\mathrm{CH} 4+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Exercise 5:

Balance the following chemical equation:
$x 1 \mathrm{P}_{2} \mathrm{I}_{4}+x 2 \mathrm{P}_{4}+x 3 \mathrm{H}_{2} \mathrm{O} \rightarrow x 4 \mathrm{PH}_{4} \mathrm{I}+x 5 \mathrm{H}_{3} \mathrm{PO}_{4}$
Solution:
We can easily balance this reaction using MATLAB:
$A=\left[\begin{array}{ll}240-1 & -1\end{array}\right.$
400-10
0 0 2-4-3
0010 -4
0000 1];
$B=[0 ; 0 ; 0 ; 0 ; 1] ;$
$X=A \backslash B ;$
$X=$
0.3125
0.4063
4.0000
1.2500
1.0000

We divide by the minimum value (first element) of \mathbf{x} to obtain integral coefficients:
$X=X / \min (X)$
$X=$
1.0000
1.3000
12.8000
4.0000
3.2000

This does not yield integral coefficients, but multiplying by 10 will do the trick:
$\mathrm{x}=\mathrm{x}$ * 10
$X=$
10
13
128
40
32
The balanced equation is
$10 \mathrm{P}_{2} \mathrm{I}_{4}+13 \mathrm{P}_{4}+128 \mathrm{H}_{2} \mathrm{O} \rightarrow 40 \mathrm{PH}_{4} \mathrm{I}+32 \mathrm{H}_{3} \mathrm{PO}_{4}$

3.Two-Dimensional Interpolation

The interp2 command performs two-dimensional interpolation between data points. It finds values of a two-dimensional function underlying the data at intermediate points>

Its most general form is:
$\mathbf{Z i}=\mathbf{i n t e r p 2}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{X i}, \mathbf{Y i})$
Zvector = interp2(X, Y, Z, Xvector, Yvector)
Note: the number of elements of the X vector and Z matrix rows must be the same, while the number of elements of the Y vector and Z matrix columns must be the same.

Exercise 6:

Calculate the values of z corresponding to $(\mathrm{x}, \mathrm{y})=(1.3,1.5)$ and $(1.5,2.3)$ from data as following:

$$
x=1,2
$$

$\mathrm{y}=1,2,3$
$\mathrm{z}=1020$
4050
7080
Solution
$\mathrm{x}=\left[\begin{array}{ll}1 & 2\end{array}\right] ;$
$y=\left[\begin{array}{ll}1 & 3\end{array}\right] ;$
$z=[1020$
4050
70 80];
$\mathbf{z 1}=$ interp2($\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{1} .3,1.5)$
The results will be
z1 =
28000
To interpolate a vector of x, y point repeat the same code with small change:
z12 = interp2(x,y,z,[1.3,1.5],[1.5,2.3])
z12 =
$28.0000 \quad 54.0000$

$\begin{gathered} P(\mathrm{bar}) \\ \left(T_{\text {sata }}{ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$		Sat'd Water	Sat'd Steam	$\begin{aligned} & \text { Temperature }\left({ }^{\circ} \mathrm{C}\right) \rightarrow \\ & 70 \end{aligned}$		100	150	200	250	300	350
$\begin{aligned} & 0.0 \\ & (-) \end{aligned}$	\hat{H}	-	-	2595	2642	2689	2784	2880	2978	3077	3177
	\hat{U}	-	-	2446	2481	2517	2589	2662	2736	2812	2890
	$\hat{\nu}$	-	-	-	-	-	-			2812	280
$\begin{gathered} 0.1 \\ (45.8) \end{gathered}$	\hat{H}	191.8	2584.8	2593	2640	2688	2783	2880	2977	3077	3177
	U	191.8	2438.0	2444	2480	2516	2588	2661	2736	2812	2890
	\hat{V}	0.00101	14.7	14.8	16.0	17.2	19.5	21.8	24.2	26.5	28.7
$\begin{gathered} 0.5 \\ (81.3) \end{gathered}$	\hat{H}	340.6	2646.0	209.3	313.9	2683	2780	2878	2979	3076	3177
	\hat{U}	340.6	2484.0	209.2	313.9	2512	2586	2660	2735	2811	2889
	\hat{V}	0.00103	3.24	0.00101	0.00103	3.41	3.89	4.35	4.83	5.29	5.75
$\begin{gathered} 1.0 \\ (99.6) \end{gathered}$	\hat{H}	417.5	2675.4	209.3	314.0	2676	2776	2875	2975	3074	3176
	$\hat{0}$	417.5	2506.1	209.2	313.9	2507	2583	2658	2734	2811	2889
	\hat{v}	0.00104	1.69	0.00101	0.00103	1.69	1.94	2.17	2.40	2.64	2.87
$\begin{gathered} 5.0 \\ (151.8) \end{gathered}$	\hat{H}	640.1	2747.5	209.7	314.3	419.4	632.2	2855	2961	3065	3168
	\hat{U}	639.6	2560.2	209.2	313.8	418.8	631.6	2643	2724	2803	2883
	\hat{V}	0.00109	0.375	0.00101	0.00103	0.00104	0.00109	0.425	0.474	0.522	0.571
$\begin{gathered} 10 \\ (179.9) \end{gathered}$	\hat{H}	762.6	2776.2	210.1	314.7	419.7	632.5	2827	2943	3052	3159
	\hat{U}	761.5	2582	209.1	313.7	418.7	631.4	2621	2710	2794	2876
	\hat{V}	0.00113	0.194	0.00101	0.00103	0.00104	0.00109	0.206	0.233	0.258	0.282

