General Physics

Radiology Techniques Department 1st Class Al-Mustaqbal University college

Lecture 4: Thermodynamic (Temperature and Heat)

2020/2021

Thermal Contact and Thermal Equilibrium

- Two objects are in **thermal contact** with each other if energy can be exchanged between them.
- **Thermal equilibrium** is a situation in which two objects would not exchange energy by heat or electromagnetic radiation if they were placed in thermal contact.

Zeroth Law of Thermodynamics

If objects A and B are separately in thermal equilibrium with a third object C, then A and B are in thermal equilibrium with each other.

Temperature and Thermometer Scale

- **Temperature** is the measure of hotness and coldness of the body.
- Thermometer is a device that is used to measure the temperature of a system.
- Thermometers are based on the principle that some physical property of a system changes as the system's temperature changes.

Type of thermometer نوع الثيرمومتر	Material المادة	Physical property الكمية الفيزيانية
Liquid thermometer	Mercury or Alcohol	Change in length
Gas Thermometer	Hydrogen	Change in pressure
Resistance thermometer	Platinum	Change in resistance
Thermocouple thermometer	Chromel and Alumel	Change in electric potential
Radiation Thermometer	Pyrometer	Change in radiation colour
Magnetic thermometer		Change in susceptibility

• Change of temperature may alter the electrical resistance, conductivity, viscosity....

The three scales that have been developed to measure temperature are.... Celsius (°C), Fahrenheit (°F) and Kelvin (K)

1-Celsius Scale

In this scale, the freezing point of water is zero (0°C) and temperature of the boiling water is 100° C.

2-Fahrenheit Scale

In this scale, the freezing point of water at 32°F and boiling water is at 212°F.

3-Kelvin Scale

In this scale, The freezing 273.15 K and the temperature of boiling water is 373.15 K. The 0 K temperatures is equal to -273° C in Celsius scale. At 0 K, the atomic particles are at rest and hence, it is called absolute zero

Temperature Scales

$$T_{C} = \frac{5}{9} (T_{F} - 32)$$
$$T_{F} = \frac{9}{5} T_{C} + 32$$
$$T_{K} = T_{C} + 273$$

C, F, and K refer to Celsius, Fahrenheit, and Kelvin, respectively.

Three scales used to represent temperature.

Question: Convert 77°F to degrees Celsius.

Solution: $T_c=5/9 (T_f - 32) = 5/9 (77 - 32) = 25^{\circ}C$

Internal Energy (Thermal Energy)

Internal energy which is the sum of the mechanical energies of its molecules Internal energy does include kinetic energies due to:

- Random translational motion
- Rotational motion
- Vibrational motion Internal energy also includes potential energy between molecules

Heat

Heat is a form of energy that is very important to radiologic technologists. Excessive heat, a deadly enemy of an x-ray tube, can cause permanent damage. **Heat** is a type of energy transfer that is caused by a temperature difference

- The unit of heat, the calorie, is defined as the heat necessary to raise the temperature of 1 g of water by 1°C.
- more precise, measurements determined the amount of mechanical energy needed to raise the temperature of water from 14.5°C to 15.5°C.

1 cal = 4.186 J This is known as the mechanical equivalent of heat.

Heat Capacity and Specific Heat

The **heat capacity** of a material is the amount of heat required to raise its temperature 1 g by 1°C.

$Q = C \Delta T$

The amount of heat required to raise temperature of a 1 kg material by 1°C is called **specific heat capacity**, and it is expressed in J/kg °C

where c is called the specific heat capacity or specific heat.

Substance	specific heat J/kg °C
Al	900
Cu	387
Glass	873
Wood	1700
Water	4186
Ice	2090

Table 1: specific heat of some substance at 25 °C and 1 Atmospheric pressure

• Water has the highest specific heat of common materials (God's Wisdom).

The equation is often written in terms of Q :

$Q = m c \Delta T$

Example: A 0.500-kg aluminum pan on a stove and 0.250 kg of water in it are heated from 20.0 $^{\circ}$ C to 80.0 $^{\circ}$ C . (a) How much heat is required? What percentage of the heat is used to raise the temperature of (b) the pan and (c) the water?

Answer :

$$\Delta T = T_{f} - T_{i} = 60.0 \ ^{\circ}C.$$

 $Q_{\rm w}=m_{\rm w}\,c_{\rm w}\,\Delta T$

=
$$(0.250 \text{ kg}) (4186 \text{ J/kg} ^{\circ}\text{C}) (60.0 ^{\circ}\text{C}) = 62.8 \text{ kJ}.$$

 $Q_{Al} = m_{Al} \; c_{Al} \; \Delta T$

 $= (0.500 \text{ kg}) (900 \text{ J/kg} ^{\circ}\text{C}) (60.0 ^{\circ}\text{C}) = 27.0 \text{ kJ}$

Find the total transferred heat:

 $Q_{Total} = Q_{\rm w} + Q_{\rm Al} = 89.8 \ kJ$

Methods of Heat Transfer

• Heat is transferred by conduction, convection, and radiation.

Conduction is the transfer of heat through a material or by touching. Heat is conducted from an x-ray tube anode through the rotor to the insulating oil.

Convection is the mechanical transfer of "hot" molecules in a gas or liquid from one place to another.

Radiation is the transfer of heat by the emission of infrared radiation. An x-ray tube cools primarily by radiation.

1-(H.W) "Room temperature" is generally defined in physics to be 25 °C.
(a) What is room temperature in °F? (b) What is it in K?

2-(H.W) A 0.250-kg block of a pure material is heated from 20.0 °C to 65.0 °C by the addition of 4.35 kJ of energy. Calculate its specific heat and identify the substance of which it is most likely composed.