Instruction Processing

The instruction is the fundamental unit of work.
Specifies two things:

- Opcode: operation to be performed
- Operands: data/locations to be used for operation

Introduction to Main Digital Component

Introduction to Digital Logic Basics

Hardware consists of a few simple building blocks

- These are called logic gates
- AND, OR, NOT, ...
- NAND, NOR, XOR, ...
\square Logic gates are built using transistors
\square Transistors are the fundamental devices
\square Pentium consists of 3 million transistors
\square Compaq Alpha consists of 9 million transistors
\square Now chips can be built with more than 100 million transistors

Data Representation/Binary numbers

Almost all modern computers are digital computers, which means that they can recognize only two distinct electronic states of electrical charge. For simplicity, these states are identified as $\mathbf{0}$ and 1, or equivalently, false and true, or off and on. Since 0 and 1 are the most compact means of representing two states, data is represented as sequences of 0's and 1's. Sequences of 0's and 1's are binary numbers.

Integer Number

The number system that we are used to is a decimal number system because it is base 10. For example:$54318=5 \times 10^{4}+4 \times 10^{3}+3 \times 10^{2}+1 \times 10^{1}+8 \times 10^{0}$
$=\quad 5 \times 10000+4 \times 1000+3 \times 100+1 \times 10+8 \times 1$
$=\quad 50000+4000+300+10+8$
$=54318$

Binary Number

To convert from decimal to binary, start with the binary number and keep dividing by 2 , writing the remainder (of any) after each division. Keep doing this until reach one. The result, then, is the remainders, starting from the bottom. Here's an example:

- 132------0
- 66-------0

ㅁ 33-------1

- 16-------08--------0
- 4--------0
- 2--------0
$\square 1$
\square Starting from the 1 at the bottom, the binary equivalent of 132 is 10000100 .

Binary Number

The binary number system works like the decimal number system, but it is a base 2 system. To convert binary to decimal, use the same method used above but use base 2.

- $11010101=$

$$
\begin{aligned}
& 1 \times 2^{7}+1 \times 2^{6}+0 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0} \\
& =\quad 1 \times 128+1 \times 64+0 \times 32+1 \times 16+0 \times 8+1 \times 4+0 \times 2+1 \times 1 \\
& =\quad 128+64+0+16+0+4+0+1 \\
& =\quad 213
\end{aligned}
$$

Basic Concepts

Logical operations (Logic Gates)

Simple gates- AND
- OR
- NOT

Functionality can be expressed by a truth table

- A truth table lists output for each possible input combination

	A		F
	0	0	0
$A-T$	0	1	0
	1	0	0
AND gate	1	1	1
	A	B	F
	0	0	0
$A \backsim F$	0	1	1
	1	0	1
OR gate	1	1	1
		A	F
A->o-F		0	1
NOT gate		1	0
Logic symbol	Truth tabbe		

Basic Concepts

Additional useful gates

- NAND
- NOR
- XORNAND = AND + NOT
NOR $=\mathrm{OR}+\mathrm{NOT}$

Half Adder

Arithmetic Operations: Binary Addition

Basic rules of binary addition are performed by a half adder, which has two binary inputs $(A$ and $B)$ and two binary outputs (Carry out and Sum).
The inputs and outputs can be summarized on a truth table.

Inputs						Outputs
A	B	$C_{\text {on }}$				
Σ						
0	0	0				
0						
0	1	0				
1	1					
1	0	0				
1	1	1				
1	1	0				

The logic symbol and equivalent circuit are:

Full-Adder

By contrast, a full adder has three binary inputs
(A, B, and Carry in) and two binary outputs
(Carry out and Sum).The truth table summarizes the operation.
\square A full-adder can be constructed from two half adders as shown:

Inputs			Outputs	
A	B	$C_{\text {n }}$	$C_{\text {out }}$	Σ
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Symbol

