General Physics

Radiology Techniques Department 1st Class Al-Mustaqbal University college

Lecture 2: Coordinate Systems and Vectors

Coordinate Systems

Used to describe the position of a point in space

Cartesian Coordinate System

In Cartesian (Also called rectangular) coordinate system: x and y - axes intersect at the origin Points are labeled (x, y)

- The x - and y-coordinates may be either positive or negative

Polar Coordinate System

Sometimes it is more convenient to use the polar coordinate system (r, θ), where r is the distance from the origin to the point of rectangular coordinate (x, y), and θ is the angle between r and the x axis.

The relation between coordinates
$\cos \theta=\frac{x}{r}$
$\sin \theta=\frac{y}{r}$

$$
x=r \cos \theta
$$

$$
\tan \theta=\frac{y}{x}
$$

$$
r=\sqrt{x^{2}+y^{2}}
$$

$$
y=r \sin \theta
$$

Example

The polar coordinates of a point are $\mathrm{r}=5.5 \mathrm{~m}$ and $\theta=240^{\circ}$. What are the Cartesian coordinates of this point?

Solution

$x=r \cos \theta=5.5 x \cos 240^{\circ}=-2.75 m$
$y=r \sin \theta=5.5 \times \sin 240^{\circ}=-4.76 m$

(H.W) The Cartesian coordinates of a point in the xy plane are $(\mathrm{x}, \mathrm{y})=(-3.50$, $-2.50) \mathrm{m}$, as shown in the figure. Find the polar coordinates of this point.

- It is common practice to measure the angle from the positive x -axis and to measure it positive for a counterclockwise direction.

Vectors and Scalars

Scalars: is completely specified by a single value (along with the unit) and has no direction. It may be positive or negative.

- Water freezes at a temperature of 0 o C or 32 o F
- The mass of a book is 198.2 g
- The length of room is 5 m
- The car kinetic energy was 0.345 J

Vectors: A quantity that deals with magnitude and direction is called a vector quantity.

- The wind had a velocity of $25 \mathrm{~km} / \mathrm{h}$ from the North
- The momentum was $1.234 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ to the left

Table 1: Vector and Scalar Quantities

Vector Quantity	Scalar Quantity
Displacement	Length
Velocity	Mass
Force	Speed
Acceleration	Power
Field	Energy
Momentum	Work

- To denote a vector use either \mathbf{A} or \vec{A}

Unit Vectors

A unit vector is a vector having a magnitude of unity and its used to describe a direction in space.

- $\mathrm{i}=\mathrm{a}$ unit vector along the x -axis
- $j=a$ unit vector along the y-axis
- $\mathrm{k}=\mathrm{a}$ unit vector along the z -axis

Any vector lying in xy plane can be resolved into two components one in the x direction and the other in the y-direction as shown in Figure
$\mathrm{A}_{\mathrm{x}}=|A| \cos \theta$
$\mathrm{A}_{\mathrm{y}}=|A| \sin \theta$

$$
\mathbf{A}=\mathrm{A}_{\mathrm{x}} \mathrm{i}+\mathrm{A}_{\mathrm{y}} \mathrm{j}
$$

The magnitude of the vector \mathbf{A}

$$
A \text { or }|A|=\sqrt{A_{x}^{2}+A_{y}^{2}}
$$

The direction of the vector to the x-axis $\tan \theta=\frac{A_{y}}{A_{x}} \rightarrow \theta=\tan ^{-1} \frac{A_{y}}{A_{x}}$

Adding Vectors Using Unit Vectors

$$
\begin{aligned}
\overrightarrow{\mathbf{R}} & =\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}} \\
\overrightarrow{\mathbf{R}} & =\left(A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}\right)+\left(B_{x} \hat{\mathbf{i}}+B_{y} \hat{\mathbf{j}}\right) \\
\overrightarrow{\mathbf{R}} & =\left(A_{x}+B_{x}\right) \hat{\mathbf{i}}+\left(A_{y}+B_{y}\right) \hat{\mathbf{j}} \\
\overrightarrow{\mathbf{R}} & =R_{x} \hat{\mathbf{i}}+R_{y} \hat{\mathbf{j}}
\end{aligned}
$$

$$
\begin{aligned}
R_{x} & =A_{x}+B_{x} \text { and } R_{y}=A_{y}+B_{y} \\
R & =\sqrt{R_{x}^{2}+R_{y}^{2}} \quad \theta=\tan ^{-1} \frac{R_{y}}{R_{x}}
\end{aligned}
$$

Example

Two vectors are given by $\vec{A}=3 i-2 j$ and $\vec{B}=-i-4 j$. Calculate (a) $\vec{A}+\vec{B}$, (b) $\vec{A}-\vec{B}$, (c) $|\vec{A}+\vec{B}|$, (d) $|\vec{A}-\vec{B}|$, and (e) the direction of $\vec{A}+\vec{B}$ and $|\vec{A}-\vec{B}|$.
(a) $\vec{A}+\vec{B}=(3 i-2 j)+(-i-4 j)=2 i-6 j$
(b) $\vec{A}-\vec{B}=(3 i-2 j)-(-i-4 j)=4 i+2 j$
(c) $|\vec{A}+\vec{B}|=\sqrt{2^{2}+(-6)^{2}}=6.32$
(d) $|\vec{A}-\vec{B}|=\sqrt{4^{2}+2^{2}}=4.47$
(e) For $\vec{A}+\vec{B}, \theta=\tan ^{-1}(-6 / 2)=-71.6^{\circ}$

For $\vec{A}-\vec{B}, \theta=\tan ^{-1}(2 / 4)=26.6^{\circ}$

Example

vector A has a negative x component 3 units in length and positive y component 2 units in length.
a) Determine an expression for \mathbf{A} in unit vector notation.
b) Determine the magnitude and direction of \mathbf{A}.

Solution

$A_{x}=-3$ units \& $A_{y}=2$ units
(a) $\mathbf{A}=\mathrm{A}_{\mathrm{x}} \mathrm{i}+\mathrm{A}_{\mathrm{y}} \mathrm{j}=-3 \mathrm{i}+2 \mathrm{j}$ units

(b) $|A|=\sqrt{A_{x}^{2}+A_{y}^{2}}=\sqrt{(-3)^{2}+(2)^{2}}=3.61$

$$
\theta=\tan ^{-1}(2 /-3)=-33.7^{\circ}(\text { relative to the }-\mathrm{x} \text { axis })
$$

