

Ministry of Higher Education and Scientific Research Al-Mustaqbal University College

Department of Chemical Engineering and petroleum Industrials

Properties of crude oil

2nd Stage

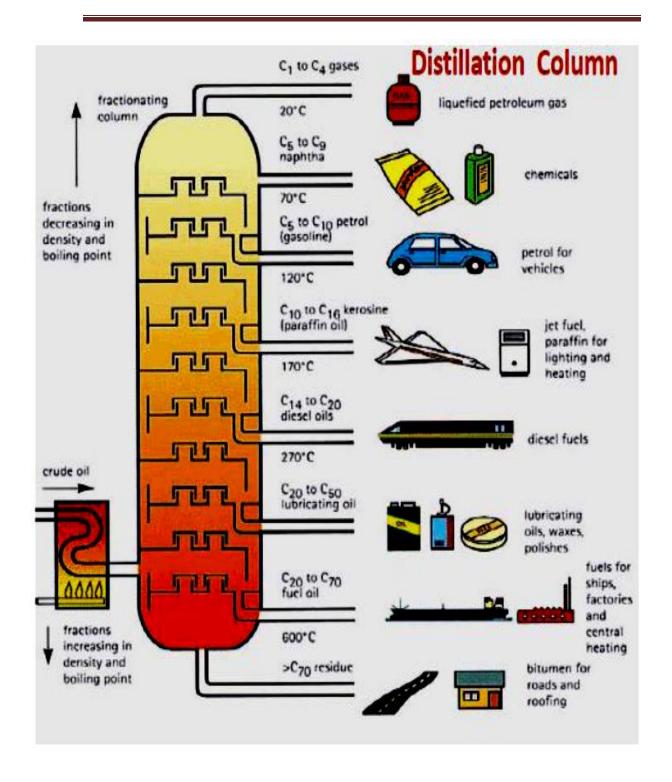
Lecturer: Dr. Duaa Alwarid

2020-2021

Crude oil Refining

Distillation (True Boiling Point test TBP)

A standard laboratory technique used to predict the refining qualities of crude petroleum; gives distillation cuts for gasoline, kerosene, distillate (diesel) fuel, etc.


The distillation tests give an indication of the types of products and the quality of the products that can be obtained from petroleum.

The tests are used to compare different petroleum types through the yield and quality of the residuum fraction.

The boiling range gives information on the composition, the properties, and the behavior of petroleum and derived products during storage and use.

Volatility is the major determinant of the tendency of hydrocarbon mixtures to produce potentially explosive vapors.

The mainly products of crude oil distillation				
Product	Boiling range °C			
Gas	< 15.5			
Gasoline (light naphtha)	15.5 - 149			
Kerosene (medium naphtha)	149 - 232			
Gas oil	232 – 343			
Light vacuum gas oil	343 – 371			
Heavy vacuum gas oil	371 – 556			
Residuum	> 566			

Product	Lower Carbon Limit	Upper Carbon Limit	Lower Boiling Point °C	Upper Boiling Point °C	Lower Boiling Point °F	Upper Boiling Point F
Refinery gas	C_1	C.	-161	-1	-259	31
Liquefied petroleum gas	C ₃	C4	-42	-1	-44	31
Naphtha	Cs	C17	36	302	97	575
Gasoline	C4	C12	-1	216	31	421
Kerosene/diesel fuel	Cs	Cis	126	258	302	575
Aviation turbine fuel	Cs	C16	126	287	302	548
Fuel oil	C12	>C ₂₀	216	421	>343	>649
Lubricating oil	>C20		>343		>649	
Wax	C17	>C20	302	>343	575	>649
Asphalt	>C20	150 (170)	>343		>649	
Coke	>C50*		>1000*		>1832*	

Octane Number

The *octane number* is a measure of the knocking characteristics of a fuel in a laboratory gasoline engine.

Knocking is explosion caused by its premature burning in the combustion chamber.

We determine the octane number of a fuel by measuring its knocking value compared to the knocking of a mixture of nheptane and isooctane or 2-2-4-trimethylpentane (224TMP).

A mixture of 30% heptane and 70% isooctane has an octane number of 70.

The octane number of n-heptane is 0 while for iso-octane is 100, by definition.

n-heptane $CH_3CH_2CH_2CH_2CH_2CH_3$ is quite low in its resistance to knock \Rightarrow octane number = 0

$$H_3C$$
 — C — C

iso octane

The *cetane number* is a measurement of the <u>combustion</u> quality of <u>diesel fuel</u> during compression ignition. It is a significant expression of diesel fuel.

In short, the higher the Cetane number the more easily the fuel will combust in a compression setting.

Normal modern highway diesels run best with a fuel rated cetane number between 45 and 55.

The optical method for determining cetane requires the use of an industry standard test engine equipped with accepted instrumentation and operated under specific conditions.