14.The extremes(max,min \&saddle points):-

To find the local extreme values of a function of a single, we look for points where the graph has a horizontal tangent line. At such points, we then look for local maxima, local minima, and points of inflection. For a function $f(x, y)$ of two variables, we look for points where the surface $z=f(x, y)$ has a horizontal tangent plane. At such points, we then look for local maxima, local minima, and saddle points (more about saddle points

in a moment)

Then:

1. if $f_{x x}<0$ and $f_{x x} f_{y y}-f_{x y}^{2}>0$ at $(a, b) \Longleftrightarrow$ then f has a local maximum at (a, b)
2. if $f_{x x}>0$ and $f_{x x} f_{y y}-f_{x y}^{2}>0$ at $(a, b) \Longrightarrow$ then f has a local minimum at (a, b)
3. if $f_{x x} f_{y y}-f_{x y}^{2}<0$ at $(a, b) \Longleftrightarrow$ then f has a saddle point at (a, b)
4. if $f_{x x} f_{y y}-f_{x y}{ }^{2}=0$ at $(a, b) \Longrightarrow$ then the test inconclusive at (a, b). In this case we must find some other way to determine the behavior of f at (a, b)

Note:-

$$
\begin{array}{r}
f_{x}=0 \text { and } f_{y}=0 \Rightarrow \text { solve these equation to find the value of } \\
\qquad(x, y)=(a, 0) \Longrightarrow(\text { critioned point })
\end{array}
$$

Mathematics (II) Al-mustaqbal University Collage

Dr. Alaa Mohammed Hussein Wais

Example: find the extreme values of the function

$$
f(x, y)=x y-x^{2}-y^{2}-2 x-2 y+4
$$

Solution:

$$
\begin{aligned}
& f_{x}=\frac{\partial f}{\partial x}=\frac{\partial}{\partial x}\left(x y-x^{2}-y^{2}-2 x-2 y+4\right)=y-2 x-2 \\
& f_{y}=\frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left(x y-x^{2}-y^{2}-2 x-2 y+4\right)=x-2 y-2
\end{aligned}
$$

$$
\left.\begin{array}{l}
f_{x}=0 \longmapsto y-2 x-2=0 \\
f_{v}=0 \longmapsto x-2 y-2=0
\end{array}\right\} \longmapsto \text { Solve these equation to find }
$$

$$
f_{y}=0 \longmapsto x-2 y-2=0 \quad \longleftrightarrow \begin{gathered}
\longrightarrow \\
(x, y) \longmapsto(a, b)
\end{gathered}
$$

$$
\left.\begin{array}{l}
x=-2 \Longleftrightarrow a=-2 \\
y=-2 \Longleftrightarrow b=-2
\end{array}\right\} \Longrightarrow \text { Critical point }(-2,-2)
$$

$$
f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial x}(y-2 x-2)=-2
$$

$$
\therefore f_{x x}(-2,-2)=-2
$$

$$
\begin{aligned}
& f_{y y}=\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial y}(x-2 y-2)=-2 \\
& \therefore f_{y y}(-2,-2)=-2
\end{aligned}
$$

$$
f_{\mathrm{xy}}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial x}(x-2 y-2)=1
$$

Mathematics (II) Al-mustaqbal University Collage
Dr. Alaa Mohammed Hussein Wais

$$
f_{x x} f_{y y}-f_{x y}^{2}=(-2)(-2)-(1)^{2}=4-1=3
$$

$f_{x x}<0$ and $f_{x x} f_{y y}-f_{x y}{ }^{2}>0 \Longrightarrow \therefore f$ has a local maximum at $(-2,-2)$
The value of f at this point is:

$$
\begin{aligned}
f(-2,-2) & =(-2)(-2)-(-2)^{2}-(-2)^{2}-(2)(-2)-(2)(-2)+4 \\
& =4-4-4+4+4+4=8
\end{aligned}
$$

Example: find the local maxima, local minima, and saddle point of the function

$$
f(x, y)=x^{2}+3 x y+3 y^{2}-6 x+3 y-6
$$

Solution:

$$
\begin{aligned}
& f_{x}=\frac{\partial f}{\partial x}=\frac{\partial}{\partial x}\left(x^{2}+3 x y+3 y^{2}-6 x+3 y-6\right)=2 x+3 y-6 \\
& f_{y}=\frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left(x^{2}+3 x y+3 y^{2}-6 x+3 y-6\right)=3 x+6 y+3
\end{aligned}
$$

$$
\left.\begin{array}{l}
\left.f_{x}=0 \longmapsto \begin{array}{l}
2 x+3 y-6=0 \\
f_{y}=0
\end{array}\right\} 3 x+6 y+3=0
\end{array}\right\} \longmapsto \begin{gathered}
\text { Solve these equation to find } \\
(x, y) \longmapsto(a, b)
\end{gathered}
$$

$$
\left.\begin{array}{l}
x=15 \Longleftrightarrow a=15 \\
y=-8 \Longleftrightarrow b=-8
\end{array}\right\} \Longrightarrow \text { Critical point }(15,-8)
$$

$$
f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial x}(2 x+3 y-6)=2
$$

Mathematics (II) Al-mustaqbal University Collage
Dr. Alaa Mohammed Hussein Wais

$$
\begin{aligned}
& \therefore f_{x x}(15,-8)=2 \\
& f_{y y}=\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial y}(3 x+6 y+3)=6 \\
& \therefore f_{y y}(15,-8)=6
\end{aligned}
$$

$$
f_{\mathrm{xy}}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial x}(3 x+6 y+3)=3
$$

$f_{x} f_{y y}-f_{x y}{ }^{2}=(2)(6)-(3)^{2}=12-9=3$
$f_{x>}>0$ and $f_{x x} f_{y y}-f_{x y}{ }^{2}>0 \Longrightarrow \therefore f$ has a local minimum at $(15,-8)$
The value of f at this point is:

$$
\begin{aligned}
f(15,-8) & =(15)^{2}+\left(3(15)(-8)+(3)(-8)^{2}-(6)(15)+(3)(-8)-6\right. \\
& =225-360+192-90-24-6=-63
\end{aligned}
$$

