Republic of Iraq

Ministry of Higher Education and Scientific Research
Al-Mustaqbal University College

Computer Engineering Techniques Department

Subject: Digital Signal Processing
 Third Class

Lecture Four

By

Classification of Discrete time signals

a- Symmetric (even) and antisymmetric (odd) signals.
A real-valued signal $x(n)$ is called symmetric (even) if :

$$
x(-n)=x(n)
$$

A signal $\mathrm{x}(\mathrm{n})$ is called antisymmetric (odd) if :

$$
x(-n)=-x(n)
$$

Fig 8. example of (a) even, (b) odd signals

Any signal $\mathrm{x}(\mathrm{n})$ may be decomposed into a sum of its even part, $\mathrm{x}(\mathrm{n})$, and its odd part, $\mathrm{x}(\mathrm{n})$ as follows:

$$
x(n)=x_{e}(n)+x_{o}(n)
$$

To find the even part of $x(n)$ we form the sum

$$
x_{e}=\frac{1}{2}\{x(n)+x(-n)\}
$$

whereas to find the odd part we take the difference

$$
x_{o}=\frac{1}{2}\{x(n)-x(-n)\}
$$

For complex sequences the symmetries of interest are slightly different
Definition: A complex signal is said to be conjugate symmetric if, for all n ,

$$
x(n)=x^{*}(-n)
$$

and a signal is said to be conjugate antisymmetric if, for all n ,

$$
x(n)=-x^{*}(-n)
$$

Ex: Show that any signal can be decomposed into an even and odd component. Is the decomposition unique? Illustrate your argument using this signal

$$
x(n)=\{5,1, \underline{4}, 2,3\}
$$

Sol:

$$
x(n)=x_{e}(n)+x_{o}(n)
$$

$$
x_{e}(n)=\frac{1}{2}[x(n)+x(-n)]
$$

$x_{e}(-2)=\frac{1}{2}[x(-2)+x(2)]$
$x_{e}(-2)=\frac{1}{2}[5+3]=\frac{1}{2} * 8=4$

$x_{e}(-1)=\frac{1}{2}[x(-1)+x(1)]$
$x_{e}(-1)=\frac{1}{2}[1+2]=\frac{1}{2} * 3=1.5$
$x_{e}(0)=\frac{1}{2}[4+4]=\frac{1}{2} * 8=4$
$x_{e}(1)=\frac{1}{2}[2+1]=\frac{1}{2} * 3=1.5$
$x_{e}(2)=\frac{1}{2}[3+5]=\frac{1}{2} * 8=4$
$x_{e}(n)=\{4,1.5, \underline{4}, 1.5,4\}$
$x_{o}(n)=\frac{1}{2}[x(n)-x(-n)]$
$x_{o}(-2)=\frac{1}{2}[5-3]=\frac{1}{2} * 2=1$
$x_{o}(-1)=\frac{1}{2}[x(-1)-x(1)]$
$x_{o}(-1)=\frac{1}{2}[1-2]=\frac{1}{2} *-1=-0.5$
$x_{o}(0)=\frac{1}{2}[4-4]=\frac{1}{2} * 0=0$
$x_{o}(1)=\frac{1}{2}[2-1]=\frac{1}{2} * 1=0.5$
$x_{o}(2)=\frac{1}{2}[3-5]=\frac{1}{2} *-2=-1$
$x_{o}(n)=\{1,-0.5,0,0.5,-1\}$

