General Physics

Radiology Techniques Department 1st Class

Al-Mustaqbal University college

Lecture 3: Mechanics

Mechanics

Mechanics is a segment of physics that deals with objects at rest (statics) and objects in motion (dynamics).

Velocity

Velocity, sometimes called speed, is a measure of how fast something is moving or, more precisely, the rate of change of its position with time.

$$
\mathrm{V}=\frac{d}{t}
$$

where d represents the distance traveled in time t .
Question: What is the velocity of a ball that travels 60 m in 4 s ?
Answer: $\mathrm{V}=\frac{d}{t}$

$$
\mathrm{V}=\frac{60 \mathrm{~m}}{4 \mathrm{~s}}=15 \mathrm{~m} / \mathrm{s}
$$

Often, the velocity of an object changes as its position changes.

- The average velocity can be calculated from the following expression:

$$
\bar{V}=\frac{V_{0}+V_{f}}{2}
$$

The initial velocity (v_{o}) and The final velocity (v_{f})
Question: What is the average velocity of the dragster?

$$
\bar{V}=\frac{0 \frac{\mathrm{~m}}{\mathrm{~s}}+80 \frac{\mathrm{~m}}{\mathrm{~s}}}{2}=40 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Acceleration

The rate of change of velocity with time is acceleration. It is how "quickly or slowly" the velocity is changing.

$$
a=\frac{V_{f}-V_{o}}{t}
$$

Question: What is the acceleration of the dragster?
Answer: $\bar{V}=\frac{80 \frac{\mathrm{~m}}{\mathrm{~s}}-0 \frac{\mathrm{~m}}{\mathrm{~s}}}{10.2 \mathrm{~s}}=7.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

Work

The work done on an object is the force applied times the distance over which it is applied.

$$
\mathrm{W}=\mathrm{Fd}
$$

Question: Find the work done in lifting an infant patient weighing $90 \mathrm{~N}(20 \mathrm{lb})$ to a height of 1.5 m .
Answer: Work $=\mathrm{Fd}=(90 \mathrm{~N})(1.5 \mathrm{~m})=135 \mathrm{~J}$

Power

Power is the rate of doing work. It define as the time rate of energy transfer.

- Power gives us a way to include the time required to perform the work.

$$
\mathrm{P}=\mathrm{Work} / \mathrm{t}=\mathrm{Fd} / \mathrm{t}
$$

- The SI unit of power is the joule/second (J / s)

1 horsepower $(\mathrm{hp})=746 \mathrm{~W}, 1000=1$ kilowatt (kW)
Example: A radiographer lifts a 0.8 kg cassette from the floor to the top of a 1.5 m table with an acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$.
What is the power exerted if it takes 1.0 s ?

Solution:

$$
\begin{aligned}
\mathrm{F} & =\mathrm{ma} \\
& =(0.8 \mathrm{~kg})\left(3 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =2.4 \mathrm{~N}
\end{aligned}
$$

Next, find work:

$$
\begin{aligned}
\text { Work } & =\mathrm{Fd} \\
& =(2.4 \mathrm{~N})(1.5 \mathrm{~m})
\end{aligned}
$$

$=3.6 \mathrm{~J}$
Now, P can be determined:

$$
\begin{aligned}
\mathrm{P} & =\mathrm{Work} / \mathrm{t} \\
& =3.6 \mathrm{~J} / 1.0 \mathrm{~s} \\
& =3.6 \mathrm{~W}
\end{aligned}
$$

Energy

- Energy is the ability to do work.
- Energy may be transformed from one form to another, but it cannot be created or destroyed

Types of energy

- Mechanical energy
- Chemical energy
- Electrical energy
- Thermal energy (heat)
- Nuclear energy
- Electromagnetic energy

Two forms of mechanical energy often are used in radiologic science: kinetic energy and potential energy.
Kinetic Energy: is the energy associated with the motion of an object as expressed by the following:

$$
\mathrm{K} \cdot \mathrm{E}=1 / 2 \mathrm{mv}^{2}
$$

A, Maximum potential energy, no kinetic energy.

B, Potential energy and kinetic energy.

C, Maximum kinetic energy, no potential energy

Example : Consider two rodeo chuck wagons, A and B, with the same mass. If B has twice the velocity of A, verify that the kinetic energy of chuck wagon B is four times that of chuck wagon A.

Answer:

Chuck wagon $\mathrm{A}: \mathrm{KE}_{\mathrm{A}}=\frac{1}{2} m v_{\mathrm{A}}{ }^{2}$
Chuck wagon B: $\mathrm{KE}_{\mathrm{B}}=\frac{1}{2} m v_{B}^{2}$
However, $\mathrm{m}_{\mathrm{A}}=m_{B}, v_{B}=2 v_{A}$
therefore, $\mathrm{KE}_{\mathrm{B}}=\frac{1}{2} m_{A}\left(2 v_{A}{ }^{2}\right)$

$$
=\frac{1}{2} m_{A}\left(4 v_{A}^{2}\right)
$$

$$
\begin{aligned}
\mathrm{KE}_{B} & =2 m v_{A}^{2} \\
& =4\left(\frac{1}{2} m v_{A}^{2}\right) \\
& =4 K E_{A}
\end{aligned}
$$

Potential energy is the stored energy of position or configuration.

- Examples of potential energy

1. Gravitational potential energy
2. Elastic potential energy

Example: the man lifts a 10 kg package 2 meters above the ground. What is the potential energy given to the package by the man?

$$
\begin{aligned}
\text { P.E } & =\mathrm{mgh} \\
& =(10)(9.8)(2) \\
& =196 \mathrm{~J}
\end{aligned}
$$

