Al-Mustaqbal University College

Chemical Engineering and Petroleum Industries department

The Binomial Distribution

* If P is the prob. That an event will happen in any single trial (called the prob. Of succeed)and $\mathrm{q}=1-\mathrm{P}$ is the prob. That it will fail to happen in any single trial (called the prob. Of a failure), then the prob. That the event will happen exactly X times in N trials (X success and $\mathrm{N}-\mathrm{X}$ failures will occur) is given by :

$$
P(X)={ }_{N} C_{X} P^{X} q^{N-X}=\frac{N!}{X!(N-X)!} P^{X} q^{N-X}
$$

Where :
$\mathrm{X}=0,1,2, \ldots, \mathrm{~N}$
$\mathrm{N}!=\mathrm{N}(\mathrm{N}-1)(\mathrm{N}-2) \ldots 1$
$0!=1$
$3!=3 * 2 * 1=6$
$10!=10 * 9 * 8 * 7 * 6 * 5 * 4 * 4 * 3 * 2 * 1=3,628,800$

Example 1)

The prob. Dist. For getting heads in N tossed of a coin is :
$P(X)={ }_{N} C_{X}\left(\frac{1}{2}\right)^{X}\left(\frac{1}{2}\right)^{N-X}$
For example $\mathrm{N}=3$?
$\operatorname{Pr}(0$ heads $)={ }_{3} C_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{3-0}$

$$
=\frac{3!}{0!(3-0)!}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{3-0}=\frac{1}{8}
$$

$\operatorname{Pr}(1$ heads $)={ }_{3} C_{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{3-1}=\frac{3}{8}$
$\operatorname{Pr}(2$ heads $)={ }_{3} C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{3-2}={ }_{3} C_{2}\left(\frac{1}{2}\right)^{3}=\frac{3}{8}$
$\operatorname{Pr}(3$ heads $)={ }_{3} C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{3-3}={ }_{3} C_{3}\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
$\mathrm{H}=$ head, $\mathrm{T}=$ tail
HHH, HHT , HTT , TTT , THH, TTH, THT , HTH
Total out coins $=8=(2)^{N}=2^{3}=8$
Where $2=P($ head + tail $)$

Example 2)

Find the prob. Of getting :
a) $\operatorname{Pr}(2 \mathrm{H}$ in 6 tosses $)={ }_{6} C_{2}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{6-2}$

$$
=\frac{6!}{2!(6-2)!}\left(\frac{1}{2}\right)^{6}=\frac{15}{64}
$$

Total out coins : $(2)^{6}=64$
b) Pr (at least 4 H in 6 tosses $)=\operatorname{Pr}(\mathrm{X} \geq 4)$

$$
=\operatorname{Pr}(X=4)+\operatorname{Pr}(X=5)+\operatorname{Pr}(X=6)
$$

$\therefore \quad \operatorname{Pr}(\mathrm{X} \geq 4)=\left[{ }_{6} C_{4}+{ }_{6} C_{5}+{ }_{6} C_{6}\right]\left[\frac{1}{2}\right]^{6}=\frac{22}{64}$

Example 3)

If 10% of items produced by a machine are defective, find the prob. that out of 5 items :
a) None are defective
$\mathrm{P}=$ prob. of success (defection).
$\mathrm{P}=0.1 \rightarrow \mathrm{q}+\mathrm{p}=1 \quad \rightarrow \mathrm{q}=0.9$
Q = $0.9=$ prob. of failure (non def.)
$\operatorname{Pr}($ o def. $)=\operatorname{Pr}(\mathrm{X}=0)={ }_{5} C_{0}(0.1)^{0}(0.9)^{5}$
$\operatorname{Pr}(\mathrm{X}=0)=\frac{5!}{0!(5-0)!}(0.1)^{0}(0.9)^{5}=0.5905$
b) All are def.
$\operatorname{Pr}(5$ def. $)=\operatorname{Pr}(X=5)={ }_{5} C_{5}(0.1)^{5}(0.9)^{5}$

$$
=\frac{5!}{5!(5-5)!}(0.1)^{5}(0.9)^{0}=0.00001
$$

c) At most 2 def.
$\operatorname{Pr}($ at most 2 def. $)=\operatorname{Pr}(\mathrm{X} \leq 2)=\operatorname{Pr}(\mathrm{X}=2)+\operatorname{Pr}(\mathrm{X}=1)+\operatorname{Pr}(\mathrm{X}=0)$
$\operatorname{Pr}(\mathrm{X} \leq 2)={ }_{5} C_{2}(0.1)^{2}(0.9)^{3}+{ }_{5} C_{1}(0.1)^{1}(0.9)^{4}+$

$$
\begin{aligned}
&{ }_{5} C_{0}(0.1)^{0}(0.9)^{5} \\
&=0.00729+0.32805+0.59049=0.9258
\end{aligned}
$$

Some properties of Binomial dist :
Mean $=\mu=\mathrm{NP}$
Variance $=\sigma^{2}=\mathrm{NPq}$
Stand. dev. $=\sigma=\sqrt{N P q}$

Relation between Binomial and Normal Distributions

* If N is large and if neither P nor q is too close to zero, the binomial distribution can be closely approximated by a normal distribution with standardized variable given by :
$Z=\frac{X-\mu}{\sigma}=\frac{X-N P}{\sqrt{N P q}}$
The approximation becomes better with increasing N, . In practice, the approximate is good when : $\mathrm{NP}>5, \mathrm{Nq}>5$.

Example 1)

Find the prob. of obtaining 3-6 heads in totosses of a coin :
a) using the Binomial dist.
$\operatorname{Pr}(3-6$ heads $)=\operatorname{Pr}(3)+\operatorname{Pr}(4)+\operatorname{Pr}(5)+\operatorname{Pr}(6)$

$$
=\left[{ }_{10} C_{3}+{ }_{10} C_{4}+{ }_{10} C_{5}+{ }_{10} C_{6}\right]\left[\frac{1}{2}\right]^{10}=0.7734
$$

b) using the normal dist.
$\operatorname{Pr}(3-6$ heads $)=\operatorname{Pr}(3 \leq X \leq 6)$
$Z=\frac{X-\mu}{\sigma}=\frac{X-N P}{\sqrt{N P q}}$
$\mu=\mathrm{NP}=10 * 0.5=5$
$\sigma=\sqrt{N P q}=\sqrt{10 * 0.5^{2}}=1.581$
For $\quad X_{1}=2.5 \rightarrow Z_{1}=-1.581 \rightarrow A_{1}=0.4431$
$\mathrm{X}_{2}=6.5 \rightarrow \mathrm{Z}_{2}=0.949 \rightarrow \mathrm{~A}_{2}=0.3287$
$\operatorname{Pr}(-1.581<\mathrm{Z}<0.949)=\mathrm{A}_{1}+\mathrm{A}_{2}=0.7718$
$\%$ of error between the binomial and normal $=0.0016$

Example 2)

What is the prob. That at most 90% of 20 students will graduate ? Given $\%$ of graduate 70% ?
a) using the Binomial dist: :
$\operatorname{Pr}\left(\right.$ at most $\left.\frac{90}{100} * 20\right)=\operatorname{Pr}($ at most $\left.) 8\right)$
$\operatorname{Pr}(X \leq 18)=\operatorname{Pr}(0)+\operatorname{Pr}(1)+\ldots+\operatorname{Pr}(18)$

$$
=1-[\operatorname{Pr}(19)+\operatorname{Pr}(20)]
$$

$\operatorname{Pr}(\mathrm{X}=19)={ }_{20} C_{19}(0.7)^{19}(0.3)^{1}=6.84 * 10^{-3}$
$\operatorname{Pr}(\mathrm{X}=20)={ }_{20} C_{20}(0.7)^{20}(0.3)^{0}=7.98 * 10^{-4}$
$\operatorname{Pr}(\mathrm{X} \leq 18)=1-\left(6.84^{*} 10^{-3}+7.98 * 10^{-4}\right)=0.992$
b) using the normal dist.
$Z=\frac{X-\mu}{\sigma}=\frac{X-N P}{\sqrt{N P q}}$
$\mu=\mathrm{NP}=20 * 0.7=14$
$\sigma=\sqrt{N P q}=2.049$
$\operatorname{Pr}(\mathrm{X} \leq 18) \rightarrow \mathrm{X}=18.5 \rightarrow \mathrm{Z}=2.196 \rightarrow \mathrm{~A}=0.48$
$\operatorname{Pr}(\mathrm{Z}<2.196)=0.5+0.486=0.986$

Relation between Binomial and Poisson:

Poisson dist. :
Is a discrete prob. dist. Defined by :
$\operatorname{Pr}(X)=\frac{\lambda^{x} e^{-\lambda}}{x!}$
Where :
$\mathrm{X}=0,1,2, \ldots, \mathrm{~N}$
$e=2.71828$
With properties :
$\mu=\lambda \quad, \quad \sigma=\sqrt{\lambda}$

Example 1)

Product of a machine is 10% defective, Find the prob. of obtaining at most 2 def. items out of 10 :
a) using Binomial :
$\operatorname{Pr}[$ at most 2$]=\operatorname{Pr}(X \leq 2)=\operatorname{Pr}(0)+\operatorname{Pr}(1)+\operatorname{Pr}(2)$
$={ }_{10} C_{0}(0.1)^{0}(0.9)^{10}+{ }_{10} C_{1}(0.1)^{1}(0.9)^{9}+{ }_{10} C_{2}(0.1)^{2}(0.9)^{8}$
$\operatorname{Pr}(X \leq 2)=0.9298$
b) using Poisson :

Poisson is applicable for large N , While P is close to zero.
In practice , $\mathrm{N} \geq 50, \mathrm{NP}<5$.
Use $\mu=N P=\lambda=10 * 0.1=1$
$\operatorname{Pr}($ at most 2$)=\operatorname{Pr}(\mathrm{X} \leq 2)=\operatorname{Pr}(0)+\operatorname{Pr}(1)+\operatorname{Pr}(2)$

$$
\begin{aligned}
=\frac{1^{0} e^{-1}}{0!}+\frac{1^{1} e^{-1}}{1!} & +\frac{1^{2} e^{-1}}{2!}=\left[1+1+\frac{1}{2}\right] e^{-1} \\
& =0.9197
\end{aligned}
$$

Example 2)

The prob. of failure of a certain process is 3%. Determine the prob. of 3 failures at most in 100 repetition of the process :
a) using binomial dist.
$\operatorname{Pr}($ at most 3$)=\operatorname{Pr}(X \leq 3)=$

$$
\begin{aligned}
& { }_{100} C_{0}(0.03)^{0}(0.97)^{100}+\cdots+{ }_{100} C_{3}(0.03)^{3}(0.97)^{97} \\
= & 0.6474
\end{aligned}
$$

b) using Poisson dist. :

$$
\begin{aligned}
& \mathrm{N}=100, \mathrm{NP}==100 * \frac{3}{100}=3=\lambda \\
& \begin{aligned}
\operatorname{Pr}(\mathrm{X} \leq 3) & =\frac{3^{0} e^{-3}}{0!}+\cdots+\frac{3^{3} e^{-3}}{3!} \\
& =\left[\frac{3^{0}}{0!}+\frac{3^{1}}{1!}+\frac{3^{2}}{2!}+\frac{3^{3}}{3!}\right]\left[e^{-3}\right]=0.6472
\end{aligned}
\end{aligned}
$$

