Dr. Alaa Mohammed Hussein Wais

## 8. Curvature, Torsion \& binormal vector: -

## Curvature for curves in space



In space there is no natural way to find an angle like $\varnothing$ with which to measuring the change in $\mathbf{T}$ along a differential curve .but we still have $\mathbf{S}$,the directed distance along the curve and can define the curvature to be

$$
\mathbf{K}=\left|\frac{d T}{d S}\right|
$$

## OR

$$
K=\frac{|v X a|}{\left|V^{3}\right|}
$$

Example: Find the curvature of the curve, where $\mathbf{a} \& b>o$

$$
\mathrm{r}=(\operatorname{acos} t i+\operatorname{asin} t j+b t k)
$$

## Solution//

$$
\mathbf{K}=\frac{|v X a|}{\left|V^{3}\right|}
$$

Dr. Alaa Mohammed Hussein Wais

$$
\begin{aligned}
& \begin{aligned}
& \mathrm{V}=\frac{d r}{d t}=-a \sin t i+a \cos t j+b k \\
& a=\frac{d v}{d t}=(-a \cos t i-a \sin t j+0 k) \\
&|V|=\sqrt{\left.(-a \sin t)^{2}+(a \cos t)^{2}\right)+b^{2}} \\
&= \sqrt{\left(a^{2} \sin ^{2} t\right)+\left(a^{2} \cos ^{2} t\right)+b^{2}} \\
&= \sqrt{a^{2}\left(\sin ^{2} t+\cos ^{2} t\right)+b^{2}} \\
&|V|=\sqrt{a^{2}+b^{2}}
\end{aligned} \\
& \qquad \begin{array}{rl}
i & j \\
\mathrm{va}= & \left|\begin{array}{ccc}
i \operatorname{asin} t & a \cos t & b \\
-a \cos t & -a \sin t & 0
\end{array}\right|
\end{array}
\end{aligned}
$$

$=+a b \sin t i-a b \cos t j+k a^{2}$

$$
\begin{gathered}
|v X a|=\sqrt{(a b \sin t)^{2}+(-a b \cos t)^{2}+\left(a^{2}\right)^{2}} \\
=\sqrt{a^{2} b^{2} \sin ^{2} t+a^{2} b^{2} \cos ^{2} t+a^{4}}=\sqrt{a^{2} b^{2}+a^{4}} \\
|V|=\sqrt{a^{2}+b^{2}} \\
|V|^{3}=\left(a^{2}+b^{2}\right)^{\frac{3}{2}} \\
K=\frac{\sqrt{a^{2} b^{2}+a^{4}}}{\left(a^{2}+b^{2}\right)^{\frac{3}{2}}}
\end{gathered}
$$

H.W.// Find the curvature of the curve, $\mathrm{r}=(\boldsymbol{c} \cos \boldsymbol{t} \boldsymbol{i}+\mathrm{c} \sin \boldsymbol{t} \boldsymbol{j})$

## Torsion \& binormal vector



Binormal vector is perpendicular to both normal (N)\& tangent(T) vector

The torsion $\tau=\left|\frac{d B}{d S}\right|$
It is measure of how mach the curve twists

$$
\tau=\frac{\left|\begin{array}{ccc}
\dot{x} & \dot{y} & \dot{z} \\
\ddot{x} & \ddot{y} & \ddot{z} \\
\ddot{x} & \ddot{y} & \ddot{z}
\end{array}\right|}{\mid v \times} \quad \text { a }\left.\right|^{2} \quad \text { if } \mathbf{v} \times \mathbf{a} \neq \mathbf{0}
$$

## Example: Find the torsion of the $r=(\cos t i+\sin t \boldsymbol{j}+\boldsymbol{t k})$

Solution/

$$
\tau=\frac{\left|\begin{array}{lll}
\dot{x} & \dot{y} & \dot{z} \\
\ddot{x} & \ddot{y} & \ddot{z} \\
\ddot{x} & \dddot{y} & \dddot{z}
\end{array}\right|}{|v X a|^{2}}
$$

Dr. Alaa Mohammed Hussein Wais

$$
\begin{gathered}
\mathrm{V}=\frac{d r}{d t}=-\sin t i+\cos t j+k \\
a=-\cos t i-\sin t j+0 k \\
\dot{a}=\sin t i-\cos t j+0 k \\
=\tau=\frac{\left|\begin{array}{ccc}
-\sin t & \cos t & 1 \\
-\cos t & -\sin t & 0 \\
\sin t & -\cos t & 0
\end{array}\right|}{\left|\begin{array}{ccc}
i & j & k \\
-\sin t & \cos t & 1 \\
-\cos t & -\sin t & 0
\end{array}\right|}=\frac{\cos ^{2} t+\sin ^{2} t}{|\sin t i-\cos t j+k|^{2}}=\frac{1}{2}
\end{gathered}
$$

H.W. Find the torsion for the curve $\mathrm{r}=(3 \sin t \boldsymbol{i}+3 \cos t \boldsymbol{j}+$ 4tk)

