Al-Mustaqbal University College

Chemical Engineering and Petroleum Industries department

Chapter (4)

Measures of Dispersion

Dispersion is the degree of data spread about an average. Several measures are used including:

Range, mean absolute deviation, standard deviation, variance and coefficient of variation.

Mean Absolute Deviation:

Is the arithmetic mean of the absolute deviations.

$$M.A.D = \frac{\sum |x_i - \bar{x}|}{N}$$
 for raw data
$$= \frac{\sum f_i |x_i - \bar{x}|}{N}$$
 for grouped data

Mean other than \bar{x} may be used to obtain M.A.D from the respective mean.

Standard Deviation:

Is the root mean square of the deviation.

$$S = \sqrt{\frac{\sum (x_i - \bar{x})^2}{N}}$$
 for raw material

$$S = \sqrt{\frac{\sum f_i(x_i - \bar{x})^2}{N}}$$
 for grouped data

$$\overline{x} = \frac{\sum x_i}{N}$$
 (for raw data)

$$\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$$
 (for grouped data, $\sum f_i = N$)

Standard deviation of a sample (S) is related to the standard deviation of the population (σ) by :

- a) Standard deviation of a sample (S) and mean (\bar{x})
- b) Standard deviation of a population (σ) and mean (μ)

$$\sigma = S \sqrt{\frac{N}{N-1}} = \sqrt{\frac{\sum f_i(x_i - \bar{x})^2}{N-1}}$$

$$\sigma = \sqrt{\frac{\sum fi (xi - \bar{x})^2}{N - 1}} \quad (\text{ for sample })$$

$$\sigma = \sqrt{\frac{\sum fi (xi - \mu)^2}{N - 1}} \quad \text{(for population)}$$

Variance:

Is the square of the standard deviation i.e. S^2 for sample, σ^2 for population.

Coefficient of Variation:

Is a relative dispersion measure (dimension less).

$$Relative \ Dispersion = \frac{absolute \ dispersion}{average}$$

Coefficient of Variation =
$$\frac{S}{z}$$

Where S = Standard deviation

 \bar{x} = The arithmetic mean

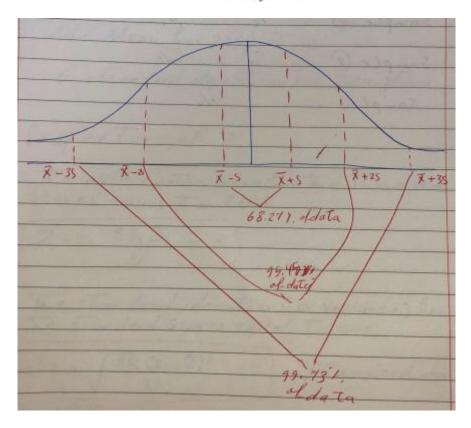
Properties of Standard Deviation:

* Of all standard deviations, the min. is that from the arithmetic mean.

Solve S =
$$\sqrt{\sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{j$$

* For ideal normal distributions:

With in
$$\bar{x} \mp S$$


With in $\bar{x} \mp S$ 68.27% of data

$$\bar{x} \mp 2S$$

 $\bar{x} \mp 2S$ 95.45% of data

$$\bar{x} \mp 3S$$

 $\overline{x} \mp 3S$ 99.73% of data

* For several samples, the combined S is given by :

$$S^2 = \frac{N_1 \, S_1^2 + \, N_2 \, S_2^2 + \, \dots}{N_1 + \, N_2 + \dots}$$

Standard Variable:

The dimensional measurements x_i may be expressed as dimension less standardized variables Zi

$$Z_i = \frac{x_i - \bar{x}}{S} = \frac{(\bar{x} + 5) - \bar{x}}{5} = 1$$

i.e. when Z=1, the measurement is removed by one standard deviation from the mean.

Properties of Z:

1. The arithematic mean for the standard scores equal to zero.

$$\dot{Z} = \frac{\sum f_i Z_i}{N} = 0$$

2. The standard deviation (or variance) for the standard scores equal to one.

$$S_Z = \sqrt{\frac{\sum f_i (Z_i - \bar{Z})^2}{N}} = 1$$

$$S_Z^2 = \frac{\sum f_i (Z_i - \bar{Z})^2}{N} = 1$$

Q 2) For the following data:

Class limits	f
60 - 62	5
63 - 65	18
66 - 68	42
69 - 71	27
72 - 74	8

Obtain:

$$A) S, S^2$$

B) Z C)
$$\acute{Z}$$
 , S_z

42 67 2819 8.50	21.276
A. $\bar{X} = \frac{2FiXi}{2Fi} = \frac{6745}{100}$ $S = \sqrt{\frac{2Fi(Xi - \bar{X})^2}{2Fi}}$ $S = \sqrt{\frac{852.75}{100}} = \frac{2.92}{100}$	
$S^{2} = (2.92)^{2} \Longrightarrow S^{2} = \begin{bmatrix} 8.527 \end{bmatrix}$ $B = Z_{i} = \frac{x_{i} - x_{i}}{S}$. (
C Z = Efizi = -0.018 = 0.000 182.	

Fi(Zi-Z)2		
24-39		
25.14		
0.994		
20.51		
29.88		
99-9		
Sz = [Eficzi-2]		
73 V	100	