Republic of Iraq

Ministry of Higher Education and Scientific Research

Al-Mustaqbal University College
Computer Engineering Techniques Department

Subject: Digital Signal Processing
 Third Class
 Lecture Five

By

Signal Manipulations

These manipulations are generally compositions of a few basic signal transformations.

1- Time Shifting
A signal $\mathrm{x}(\mathrm{n})$ may be shifted in time by replacing the independent variable n by $n-k$, where k is an integer. If k is a positive integer $\mathrm{x}(\mathrm{n})$ is shifted to the right by k unit of time $x(n-k)$ (this is referred to as a delay), and it is shifted to the left by k unit of time $x(n+k)$ if k is negative (referred to as an advance).

2- Time Reversal

This transformation is given by $x(n)=x(-n)$ where the independent variable n is replaced by $-n$ and simply involves flipping the signal $\mathrm{x}(\mathrm{n})$ with respect to the index n.

3- Time Scaling

This transformation involves the replacing of the independent variable n by $k n$ or n / k where k is an integer number. The replacing by using $k n$ is $x(k n)$ can be expressed by down-sampling while the replacing by n / k is $x(n / k)$ can be expressed by upsampling.

Example 1: for the given signal $\mathrm{x}[\mathrm{n}]$, draw the following
$\mathrm{x}[\mathrm{n}-2], \mathrm{x}[-\mathrm{n}], \mathrm{x}[\mathrm{n} / 2]$.

Sol:

(e) Up-sampling by a factor of 2 .

4- Amplitude Scaling

Amplitude scaling of a signal $\mathrm{x}(\mathrm{n})$ by a constant c is accomplished by multiplying every signal value by c :

$$
y(n)=c x(n)
$$

Example 2: multiply the sequence $\mathrm{x}[\mathrm{n}]=\{2,4,3,0,7\}$ by a constant $c=3$.

$$
\mathrm{y}[\mathrm{n}]=3\{2,4,3,0,7\}=\{6,12,9,0,21\}
$$

5- Addition

The sum of two signals is formed by the pointwise addition of the signal values.

$$
y(n)=x_{1}(n)+x_{2}(n)
$$

Example 3: add the two sequences $\{0.5,3,1.5,6\}$ and $\{2.5,0.75,4,0.8\}$

$$
\mathrm{y}[\mathrm{n}]=\{0.5,3,1.5,6\}+\{2.5,0.75,4,0.8\}=\{0.5+2.5,3+0.75,1.5+4,6+0.8\}
$$

$$
=\{3,3.75,5.5,6.8\}
$$

