
    

      

Al-Mustaqbal University College                          1                        http://www.mustaqbal-college.edu.iq/ 

Class: 3rd  

Subject: Heat Transfer 
Lecturer: Dr. Athraa Al-Abbasi 

E-mail: Dr.AthraaHameed@mustaqbal-

college.edu.iq 

  

 

CHAPTER THREE 

One-Dimensional, Steady-State Conduction 

3.1 The Plane Wall 

Consider the plane wall of Figure (3.1) where a direct application of Fourier’s law 

may be made. Integration yields 

𝑞𝑥 = −𝑘𝐴
𝑑𝑇

𝑑𝑥
= −

𝑘𝐴

∆𝑥
(𝑇𝑠,2 − 𝑇𝑠,1)                             (3.1) 

𝑞𝑥 =
𝑘𝐴

𝐿
(𝑇𝑠1 − 𝑇𝑠2) =

𝑇𝑠1 − 𝑇𝑠2

𝑅𝑡,𝑐𝑜𝑛𝑑.
                                (3.2) 

Thermal resistance for conduction is  

𝑅𝑡,𝑐𝑜𝑛𝑑. =
∆𝑥

𝑘𝐴
=

𝐿

𝑘𝐴
                                                        (3.3) 

  Figure (3.1) Heat Transfer through a Plane Wall. 

The equivalent thermal circuit for the plane wall with convection surface conditions 

is shown in Figure (3.2). The heat transfer rate may be determined from separate 

consideration of each element in the network. Since(𝑞𝑥) is constant throughout the network, 

it follows that 

𝑞𝑥 =
𝑇∞,1 − 𝑇𝑠,1

1 ℎ1𝐴⁄
=

𝑇𝑠,1 − 𝑇𝑠,2

𝐿 𝑘𝐴⁄
=

𝑇𝑠,2 − 𝑇∞,2

1 ℎ2𝐴⁄
 

 

Figure (3.2) Heat Transfer through a Plane Wall. (a) Temperature Distribution. 

(b) Equivalent Thermal Circuit 

(a) (b) 
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The thermal resistance for convection is 

𝑅𝑡,𝑐𝑜𝑛𝑣. =
1

ℎ𝐴
                                                                   (3.4) 

In terms of the overall temperature difference (𝑇∞,1 − 𝑇∞,2), and the total thermal 

resistance (𝑅𝑡𝑜𝑡) the heat transfer rate may also be expressed as 

𝑞𝑥 =
(𝑇∞,1 − 𝑇∞,2)

𝑅𝑡𝑜𝑡
 

𝑅𝑡𝑜𝑡 =
1

ℎ1𝐴
+

𝐿

𝑘𝐴
+

1

ℎ2𝐴
 

 

3.2 The Composite Wall 

As shown in the figure below there are three walls in series with each other a situation 

which is similar to an electrical circuit consisting of three series resistors and battery across 

them. 

 

The total resistance through the Composite wall is given by  

∑ 𝑅𝑡𝑜𝑡 = 𝑅1 + 𝑅2 + 𝑅3 =
∆𝑥1

𝑘1𝐴1
+

∆𝑥2

𝑘2𝐴2
+

∆𝑥3

𝑘3𝐴3
 

And gives a total heat flow (q) is 

𝑞 =
∆𝑇𝑜𝑣𝑒𝑟𝑎𝑙𝑙

∑ 𝑅𝑡𝑜𝑡
=

𝑇𝑖 − 𝑇0

∆𝑥1 𝑘1𝐴1⁄ + ∆𝑥2 𝑘2𝐴2⁄ + ∆𝑥3 𝑘3𝐴3⁄
= 𝑈𝐴∆𝑇 

Where U is the overall heat transfer coefficient  

∆x1

  

∆x2

  

∆x3

  

Ti T1 T2 T0 

R1 

k1 

R2 

k2 

R3 

k3 

   

(a) 
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𝑈 =
1

∆𝑥1 𝑘1⁄ + ∆𝑥2 𝑘2⁄ + ∆𝑥3 𝑘3⁄
 

𝑈𝐴 =
1

∑ 𝑅𝑡𝑜𝑡
                                               (3.5) 

Noting that the heat flow across the first wall is equal to the second and third walls. 

𝑞 =
𝑇𝑖 − 𝑇1

∆𝑥1 𝑘1𝐴1⁄
=

𝑇1 − 𝑇2

∆𝑥2 𝑘2𝐴2⁄
=

𝑇2 − 𝑇0

∆𝑥3 𝑘3𝐴3⁄
 

There are many other connect of thermal resistance. For example, the composite 

wall as shown below the overall resistance is: 

∑ 𝑅𝑡ℎ = 𝑅1 + [
1

𝑅2
+

1

𝑅3
]

−1

+ 𝑅4 

 

And when the case is a combination of conduction and convection as shown in the 

figure below the electrical analogy will be 

 

 

 

 

 

 and the heat flow (q) is  

𝑞 =
𝑇𝑖 − 𝑇∞

∆𝑥 𝑘𝐴⁄ + 1 ℎ𝐴⁄
 

The general case of a combination of conduction and convection as shown in the figure 

below 

 

 

1 
2 

3 

4 

𝑇𝑖  
𝑇𝑠 

ℎ
𝑇∞

 

𝐴 

∆𝑥 

𝑇𝑓𝑖 

ℎ𝑖  

𝑇1 𝑇2 𝑇3 𝑇𝑓0 

ℎ0 

 

𝑘1 𝑘2 

∆𝑥1 ∆𝑥2 
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𝑞 =
∆𝑇𝑜𝑣𝑒𝑟𝑎𝑙𝑙

∑ 𝑅𝑡𝑜𝑡
=

𝑇𝑓𝑖 − 𝑇𝑓0

∑ 𝑅𝑡𝑜𝑡
,           ∑ 𝑅𝑡ℎ =

1

ℎ𝑖𝐴
+

∆𝑥1

𝑘1𝐴1
+

∆𝑥2

𝑘2𝐴2
+

1

ℎ0𝐴
 

Example (3.1): A laboratory furnace wall is constructed of (0.2 m) thick fireclay with (𝑘𝑎 =

1 𝑊/𝑚. 𝐾) this is covered on the outer surface with (0.03 m) thick layer of insulation 

material having (𝑘𝑏 = 0.07 𝑊/𝑚. 𝐾) the furnace inner brick surface is at  (1250 K) and the 

outer surface of the insulation is (310 K). Calculate the steady-state heat transfer rate through 

the wall in 𝑊/𝑚2, and determined the interfacial temperature (T2) between the brick and 

insulation. 

Solution: 

𝑞

𝐴
=

𝑇1 − 𝑇3

∆𝑥𝑎 𝑘𝑎⁄ + ∆𝑥𝑏 𝑘𝑏⁄
 

𝑞

𝐴
=

1250 − 310

0.2 1⁄ + 0.03 0.07⁄
= 1495 𝑊 𝑚2⁄  

𝑞

𝐴
=

𝑇1 − 𝑇2

∆𝑥𝑎 𝑘𝑎⁄
 

1495 =
1250 − 𝑇2

0.2 1⁄
 

𝑇2 = 951 𝐾 

Example (3.2): A (0.1 m) thick brick wall (k=0.7 W/m. K) is exposed to a cold wind at (270 

K) through a convection heat transfer coefficient of (40 W/m2.K) on the other side is air at 

(330 K) with a natural convection heat transfer coefficient of (10 W/m2.K). Calculate the 

rate of heat transfer per unit area. 

Solution: 

𝑞

𝐴
=

∆𝑇

1 ℎℎ⁄ + ∆𝑥 𝑘⁄ + 1 ℎ𝑐⁄
 

𝑞

𝐴
=

330 − 270

1 10⁄ + 0.1 0.7⁄ + 1 40⁄
 

𝑞

𝐴
= 223.9 𝑊/𝑚2 

0.1 m 

𝑘 

𝑇𝑐 

ℎ𝑐  

 

𝑇ℎ 

ℎℎ 

 

0.2 m 

A 

𝑘𝑎 

𝑇1 𝑇2 𝑇3 

0.03 m 

B 

𝑘𝑏 
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Example (3.3): Consider a (0.8 m) high and (1.5 m) wide double pane window consisting 

of two (4 mm) thick layer of glass (𝑘 = 0.78 𝑊/𝑚. °𝐶) separated by (10 mm) wide stagnant 

air space (𝑘 = 0.026 𝑊/𝑚. °𝐶). Determined the steady rate of heat transfer through this 

double pane window and temperature of its inner surface for a day during which the room 

is maintained at (20 °C) while the temperature of outdoor is (-10 °C) take the convection 

heat transfer coefficient of the inner and outer surface of the window to be (ℎ𝑖 =

10 𝑊/𝑚2. °𝐶), (ℎ0 = 40 𝑊/𝑚2. °𝐶). 

Solution: 

𝐴 = 0.8 ∗ 1.5 = 1.2 𝑚2 

𝑅𝑖 =
1

ℎ𝑖𝐴
=

1

10 ∗ 1.2
= 0.083 ℃/𝑊 

𝑅1 = 𝑅3 = 𝑅𝑔𝑙𝑎𝑠𝑠 =
𝐿1

𝑘1𝐴
=

0.004

0.78 ∗ 1.2
= 0.00427 ℃/𝑊 

𝑅2 = 𝑅𝑎𝑖𝑟 =
𝐿2

𝑘2𝐴
=

0.01

0.026 ∗ 1.2
= 0.3205 ℃/𝑊 

𝑅0 =
1

ℎ0𝐴
=

1

40 ∗ 1.2
= 0.02083 ℃/𝑊 

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑖 + 𝑅1 + 𝑅2 + 𝑅3 + 𝑅0 

𝑅𝑡𝑜𝑡𝑎𝑙 = 0.083 + 0.00427 + 0.3205 + 0.00427 + 0.02083 

𝑅𝑡𝑜𝑡𝑎𝑙 = 0.4332 ℃/𝑊 

The steady rate of heat transfer through the double-pane window is: 

𝑞 =
∆𝑇𝑜𝑣𝑒𝑟𝑎𝑙𝑙

𝑅𝑡𝑜𝑡𝑎𝑙
=

𝑇∞1 − 𝑇∞2

𝑅𝑡𝑜𝑡𝑎𝑙
=

20 − (−10)

0.4332
= 69.2 𝑊 

The inner temperature is: 

𝑞 =
𝑇∞1 − 𝑇1

𝑅𝑖
 

69.2 =
20 − 𝑇1

0.083
 

𝑇1 = 14.2 ℃ 
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3.3 Radial Systems 

3.3.1 Cylinders  

Consider a long cylinder of the inside radius (𝑟𝑖), outside radius (𝑟0), and length (𝐿), 

such as the one shown in Figure (3.12). We expose this cylinder to a temperature differential 

(𝑇𝑖 − 𝑇0). For a cylinder with length very large compared to diameter, it may be assumed 

that the heat flows only in a radial direction so that the only space coordinate needed to 

specify the system is (𝑟𝑖). Again, Fourier’s law is used by inserting the proper area relation. 

The area for heat flow in the cylindrical system is 

𝐴𝑟 = 2𝜋𝑟𝐿 

𝑞𝑟 = −𝑘𝐴𝑟

𝑑𝑇

𝑑𝑟
= −2𝜋𝐿𝑘

𝑑𝑇

𝑑𝑟
                                           (3.6) 

The solution of the above equation is  

𝑞𝑟 = 2𝜋𝐿𝑘
(𝑇𝑖 − 𝑇0)

ln (𝑟0 𝑟𝑖)⁄
=

(𝑇𝑖 − 𝑇0)

𝑅𝑡ℎ
                                  (3.7) 

and the thermal resistance in this case is 

𝑅𝑡ℎ =
ln (𝑟0 𝑟𝑖)⁄

2𝜋𝐿𝑘
                                                                      (3.8) 

 

Figure (3.12) One Dimensional Heat Flow through a Hollow Cylinder and Electrical 

Analog. 
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The thermal resistance concept may be used for multiple layer cylindrical walls just 

as it was used for plane walls. For the three-layer system shown in Figure (3.13) the solution 

is 

𝑞𝑟 =
(𝑇𝑖 − 𝑇0)

𝑅𝑡ℎ
=

2𝜋𝐿(𝑇𝑖 − 𝑇0)

ln(𝑟2 𝑟1⁄ ) 𝑘𝐴⁄ + ln(𝑟3 𝑟2⁄ ) 𝑘𝐵⁄ + ln(𝑟4 𝑟3⁄ ) 𝑘𝐶⁄
 

𝑅𝑡ℎ =
ln 𝑟2 𝑟1⁄

2𝜋𝐿𝑘𝐴
+

ln 𝑟3 𝑟2⁄

2𝜋𝐿𝑘𝐵
+

ln 𝑟4 𝑟3⁄

2𝜋𝐿𝑘𝐶
 

 

 

 

 

 

 

Figure (3.13) Thermal Resistance of Multiple Layer Cylindrical Walls 

The hollow cylinder whose inner and outer surfaces are exposed to fluids at different 

temperatures Figure (3.14). The overall heat transfer would be expressed by 

𝑞 =
(𝑇∞,1 − 𝑇∞,2)

𝑅𝑡𝑜𝑡
=

(𝑇∞,1 − 𝑇∞,2)

1 𝐴𝑖ℎ𝑖⁄ + ln(𝑟0 𝑟𝑖⁄ ) 2𝜋𝑘𝐿⁄ + 1 𝐴0ℎ0⁄
 

 

Figure (3.14) Hollow Cylinder with Convective Surface Conditions. 
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Example (3.4): A thick-walled tube of stainless steel (18% Cr, 8% Ni, k = 19 W/m · °C) 

with (2 cm) inner diameter and (4 cm) outer diameter is covered with a (3 cm) layer of 

asbestos insulation (k = 0.2 W/m. °C). If the inside wall temperature of the pipe is 

maintained at (600 °C) and the outside wall temperature is at (100 °C), calculate the heat 

loss per meter of length. Also calculate the tube insulation interface temperature. 

Solution: 

𝑞 𝐿⁄ =
2𝜋(𝑇1 − 𝑇2)

ln(𝑟2 𝑟1⁄ ) 𝑘𝑠⁄ + ln(𝑟3 𝑟2⁄ ) 𝑘𝑎⁄
 

𝑞 𝐿⁄ =
2𝜋(600 − 100)

ln(2 1⁄ ) 19⁄ + ln (5 2)⁄ 0.2⁄
 

𝑞 𝐿⁄ = 680 𝑊/𝑚 

 

This heat flow may be used to calculate the interface temperature between the outside tube 

wall and the insulation. We have 

𝑞 𝐿⁄ =
(𝑇𝑎 − 𝑇2)

ln(𝑟3 𝑟2⁄ ) 2𝜋𝑘𝑎⁄
 

680 =
2𝜋(𝑇𝑎 − 100)

ln (5 2)⁄ 0.2⁄
 

𝑇𝑎 = 595.8  °C 

Example (3.5): Water flows at (50 °C) inside a (2.5 cm) inside diameter tube such that   (hi 

= 3500 W/m2 · °C). The tube has a wall thickness of (0.8 mm) with thermal conductivity of 

(k=16 W/m. °C). The outside of the tube loses heat by free convection with (ho = 7.6 W/m2. 

°C). Calculate the heat loss per unit length to surrounding air at     (20 °C). 

Solution: 

𝐷𝑖 = 0.025 𝑚                      ⇒ 𝑟𝑖 = 0.0125𝑚     

𝐷0 = 𝐷𝑖 + 2𝑡 = 0.025 + 2 ∗ 0.0008 = 0.0266 𝑚            ⇒  𝑟0 = 0.0133 𝑚 

for unit length  L = 1 m  

𝐴𝑖 = 𝜋𝐷𝑖𝐿 = 𝜋 ∗ 0.025 ∗ 1 = 0.0785 𝑚2 



    

      

Al-Mustaqbal University College                          9                        http://www.mustaqbal-college.edu.iq/ 

Class: 3rd  

Subject: Heat Transfer 
Lecturer: Dr. Athraa Al-Abbasi 

E-mail: Dr.AthraaHameed@mustaqbal-

college.edu.iq 

  

 

𝐴0 = 𝜋𝐷0𝐿 = 𝜋 ∗ 0.0266 ∗ 1 = 0.0835 𝑚2 

𝑞 =
(𝑇𝑖 − 𝑇0)

𝑅𝑡𝑜𝑡
=

(𝑇𝑖 − 𝑇0)

1 𝐴𝑖ℎ𝑖⁄ + ln(𝑟0 𝑟𝑖⁄ ) 2𝜋𝑘𝐿⁄ + 1 𝐴0ℎ0⁄
 

𝑞 =
(50 − 20)

1 0.0785 ∗ 3500⁄ + ln(0.0133 0.0125⁄ ) 2𝜋 ∗ 16 ∗ 1⁄ + 1 0.0835 ∗ 7.6⁄
= 19 𝑊 

 

3.3.2 Spheres  

Spherical systems may also be treated as one-dimensional when the temperature is a 

function of radius only. The heat flow is then 

𝑞𝑟 =
(𝑇𝑖 − 𝑇0)

𝑅𝑡ℎ
=

4𝜋𝑘(𝑇𝑖 − 𝑇0)

1 𝑟𝑖⁄ − 1 𝑟0⁄
                                        (3.9) 

𝑅𝑡ℎ =
1

4𝜋𝑘
(

1

𝑟𝑖
−

1

𝑟0
)                                                             (3.10) 

The hollow sphere, whose inner and outer surfaces are exposed to fluids at different 

temperatures Figure (3.15). The overall heat transfer would be expressed by 

𝑞 =
(𝑇ℎ − 𝑇𝑐)

𝑅𝑡𝑜𝑡
=

(𝑇ℎ − 𝑇𝑐)

1 𝐴𝑖ℎℎ⁄ + (
1

𝑟1
−

1

𝑟2
) 4𝜋𝑘𝐴⁄ + (

1

𝑟2
−

1

𝑟3
) 4𝜋𝑘𝐵⁄ + 1 𝐴0ℎ𝑐⁄

 

𝑤ℎ𝑒𝑟𝑒 𝐴𝑖 = 4𝜋𝑟1
2              

and  𝐴0 = 4𝜋𝑟3
2 

 

Figure (3.15) Hollow Sphere with Convective Surface Conditions. 
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Example (3.6): A spherical, thin-walled metallic container is used to store liquid nitrogen 

at (77 K). The container has a diameter of (0.5 m) and is covered with an evacuated, 

reflective insulation composed of silica powder with (k = 0.0017 W/m. K). The insulation 

is (25 mm) thick, and its outer surface is exposed to ambient air at (300 K). The convection 

coefficient is known to be (20 W/m2. K). What is the rate of heat transfer to the liquid 

nitrogen? 

Solution: 

 

 

𝑟1 =
𝐷1

2
=

0.5

2
= 0.25 𝑚 

𝑟2 = 𝑟1 + 𝑡 = 0.25 + 0.025 = 0.275 𝑚 

𝑞 =
(𝑇∞,2 − 𝑇∞,1)

𝑅𝑡𝑜𝑡
 

𝑞 =
(𝑇∞,2 − 𝑇∞,1)

(
1

𝑟1
−

1

𝑟2
) 4𝜋𝑘⁄ + 1 4𝜋𝑟2

2ℎ⁄
 

𝑞 =
(300 − 77)

(
1

0.25
−

1

0.275
) 4𝜋 ∗ 0.0017⁄ + 1 4𝜋 ∗ 0.2752 ∗ 20⁄

 

𝑞 =
223

17.02 + 0.05
  

𝑞 = 13.06 𝑊  
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3.4 Critical Thickness of Insulation 

  Let us consider a layer of insulation that might be installed around a circular pipe, as 

shown in Figure (3.16). The inner temperature of the insulation is fixed at Ti, and the outer 

surface is exposed to a convection environment at T∞. From the thermal network, the heat 

transfer is 

𝑞 =
2𝜋𝐿(𝑇𝑖 − 𝑇∞)

ln(𝑟0 𝑟𝑖⁄ ) 𝑘⁄ + 1 𝑟0ℎ0⁄
                                           (3.11) 

Now let us manipulate this expression to determine the outer radius of insulation 

(ro) which will maximize the heat transfer. The maximization condition is 

𝑑𝑞

𝑑𝑟0
= 0 =

−2𝜋𝐿(𝑇𝑖 − 𝑇∞)(
1

𝑘𝑟0
−

1

ℎ𝑟0
2)

[ln( 𝑟0 𝑟𝑖)⁄ 𝑘⁄ + 1 𝑘𝑟0⁄ ]2
                      (3.12) 

The result of the above equation (3.12) expresses the critical radius of insulation concept. 

𝑟𝑐 =
𝑘

ℎ
                                                                                (3.13) 

If 𝑟0 < 𝑟𝑐 then the heat transfer will be increased by adding more insulation. 

If 𝑟0 > 𝑟𝑐 then the heat transfer will be decreased by an increase in insulation 

thickness  

 

Figure (3.16) Critical Insulation Thickness. 

The critical radius of insulation for the sphere is 

𝑟𝑐 =
2𝑘

ℎ
                                                                          (3.14) 
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Example (3.7): Calculate the critical radius of insulation for asbestos (k = 0.17 W/m · °C) 

surrounding a pipe and exposed to room air at (20 °C) with (h = 3.0 W/m2 · °C). Calculate 

the heat loss from a (200 °C), (5 cm) diameter pipe when covered with the critical radius 

of insulation and without insulation. 

Solution: 

𝑟𝑐 =
𝑘

ℎ
=

0.17

3
= 0.0567 𝑚 

𝑟𝑖 = 𝐷𝑖 2⁄ = 0.05 2⁄ = 0.025 𝑚 

With insolation 

𝑞 𝐿⁄ =
2𝜋(𝑇𝑖 − 𝑇∞)

ln(𝑟𝑐 𝑟𝑖⁄ ) 𝑘⁄ + 1 𝑟𝑐ℎ0⁄
 

𝑞 𝐿⁄ =
2𝜋(200 − 20)

ln (0.0567 0.025)⁄ 0.017⁄ + 1 0.0567 ∗ 3⁄
 

𝑞 𝐿⁄ = 105.7 𝑊/𝑚 

Without insulation 

𝑞 𝐿⁄ = 2𝜋𝑟𝑖ℎ(𝑇𝑖 − 𝑇∞) = 2𝜋 ∗ 0.025 ∗ 3 ∗ (200 − 20) 

𝑞 𝐿⁄ = 84.8 𝑊 𝑚⁄  

3.5 Heat Transfer from Extended Surfaces 

The term extended surface is commonly used to depict an important special case 

involving heat transfer by conduction within a solid and heat transfer by convection (and/or 

radiation) from the boundaries of the solid. The most frequent application is one in which 

an extended surface is termed a fin, which is used specifically to enhance heat transfer 

between a solid and an adjoining fluid. Different fin configurations are illustrated in Figure 

(3.17). 

 
Figure (3.17) Fin Configurations. (a) Straight Fin of Uniform Cross Section. (b) Straight 

Fin of Non-Uniform Cross Section. (c) Annular Fin. (d) Pin Fin. 
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Consider the one-dimensional fin exposed to a surrounding fluid at a temperature (T∞) 

as shown in Figure (3.18). We approach the problem by making an energy balance on an 

element of the fin of a thickness (dx) as shown in the figure. Applying the conservation of 

energy required to the differential element of Figure (3.18), we obtain 

𝑞𝑥 = 𝑞𝑥+𝑑𝑥 + 𝑑𝑞𝑐𝑜𝑛𝑣                                                             (3.15)  

𝑞𝑥 = −𝑘𝐴𝑐

𝑑𝑇

𝑑𝑥
                                                                        (3.16) 

where (Ac) is the cross-sectional area, which may vary with (x). Since the conduction heat 

rate at (x + dx) may be expressed as 

𝑞𝑥+𝑑𝑥 = 𝑞𝑥 +
𝑑𝑞𝑥

𝑑𝑥
𝑑𝑥                                                              (3.17) 

𝑞𝑥+𝑑𝑥 = −𝑘𝐴𝑐

𝑑𝑇

𝑑𝑥
− 𝑘

𝑑

𝑑𝑥
(𝐴𝑐

𝑑𝑇

𝑑𝑥
) 𝑑𝑥                                (3.18) 

𝑑𝑞𝑐𝑜𝑛𝑣 = ℎ𝑑𝐴𝑠(𝑇 − 𝑇∞)                                                         (3.19) 

Where 𝑑𝐴𝑠 is the surface area of the differential element. 

 

Figure (3.18) Sketch Illustrating One Dimensional Conduction and Convection through a 

Rectangular Fin. 

Substituting the foregoing rate equations into the energy balance, Eq. (3.15), we obtain 
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−𝑘𝐴𝑐

𝑑𝑇

𝑑𝑥
= −𝑘𝐴𝑐

𝑑𝑇

𝑑𝑥
− 𝑘

𝑑

𝑑𝑥
(𝐴𝑐

𝑑𝑇

𝑑𝑥
) 𝑑𝑥 + ℎ𝑑𝐴𝑠(𝑇 − 𝑇∞)                            (3.20) 

𝑑

𝑑𝑥
(𝐴𝑐

𝑑𝑇

𝑑𝑥
) −

ℎ

𝑘

𝑑𝐴𝑠

𝑑𝑥
(𝑇 − 𝑇∞) = 0                                                              (3.21) 

The general equation of heat transfer in a fin is 

𝐴𝑐

𝑑2𝑇

𝑑𝑥2
+

𝑑𝑇

𝑑𝑥

𝑑𝐴𝑐

𝑑𝑥
−

ℎ

𝑘

𝑑𝐴𝑠

𝑑𝑥
(𝑇 − 𝑇∞) = 0                                                     (3.22) 

For constant cross-sectional area 𝐴𝑐  and 𝑑𝐴𝑠 = 𝑃𝑑𝑥, where 𝐴𝑠  is the surface area 

measured from the base to x and (P) is the fin perimeter. So that Eq. (3.22) reduces to 

𝑑2𝑇

𝑑𝑥2
−

ℎ𝑃

𝑘𝐴𝑐

(𝑇 − 𝑇∞) = 0                                                                                 (3.23) 

Let (𝑇 − 𝑇∞) = 𝜃(𝑥) 

∴
𝑑2𝑇

𝑑𝑥2
=

𝑑2𝜃

𝑑𝑥2
 

𝑑2𝜃

𝑑𝑥2
− 𝑚2𝜃 = 0                                                                                                  (3.24) 

𝑤ℎ𝑒𝑟𝑒     𝑚 = √
ℎ𝑃

𝑘𝐴𝑐
 

The general solution for Eq. (3.24) may be written 

𝜃 = 𝐶1𝑒𝑚𝑥 + 𝐶2𝑒−𝑚𝑥                                                                                        (3.25) 

The boundary condition depends on the physical situation. Several cases may be 

considered: 
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CASE (1): The fin is very long, and the temperature at the end of the fin is essentially that 

of the surrounding fluid. 

 

𝜃 = 𝐶1𝑒𝑚𝑥 + 𝐶2𝑒−𝑚𝑥                               (1)  

B.C 1: 𝑎𝑡 𝑥 = 0        𝑇 = 𝑇𝑏 

𝑇 − 𝑇∞ = 𝑇𝑏 − 𝑇∞ = 𝜃b sub. In Eq. (1) 

𝜃b = 𝐶1𝑒𝑚∗0 + 𝐶2𝑒−𝑚∗0 

𝜃b = 𝐶1 + 𝐶2                                              (2)  

B.C 2: 𝑎𝑡 𝑥 = ∞        𝑇 = 𝑇∞ 

𝑇 − 𝑇∞ = 𝑇∞ − 𝑇∞ = 0 = 𝜃 sub. in Eq. (1) 

0 = 𝐶1𝑒𝑚∗∞ + 𝐶2𝑒−𝑚∗∞                𝑤ℎ𝑒𝑟𝑒   𝑒−∞ = 0   𝑎𝑛𝑑   𝑒∞ = ∞ 

0 = 𝐶1 + 0                ∴ 𝐶1 = 0  sub. in Eq. (2) 

𝜃b = 0 + 𝐶2              ∴ 𝐶2 = 𝜃𝑏 sub. in Eq. (1) 

𝜃 = 𝜃𝑏𝑒−𝑚𝑥 

𝜃

𝜃𝑏
=

𝑇 − 𝑇∞

𝑇𝑏 − 𝑇∞
= 𝑒−𝑚𝑥                             (3.26) 

𝑞 = −𝑘𝐴 
𝑑𝑇

𝑑𝑥
]

𝑥=0
= −𝑘𝐴 

𝑑𝜃

𝑑𝑥
]

𝑥=0
 

𝑞 = −𝑘𝐴𝜃b(−𝑚)𝑒−𝑚𝑥]𝑥=0 = 𝑘𝐴𝑚𝜃b 

𝑞 = 𝑘𝐴√
ℎ𝑃

𝑘𝐴
𝜃b = √𝑘𝐴ℎ𝑃𝜃b                                                               (3.27)  
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CASE (2): The fin is of finite length and loses heat by convection from its end. 

 

𝜃 = 𝐶1𝑒𝑚𝑥 + 𝐶2𝑒−𝑚𝑥              (1)   

B.C 1: 𝑎𝑡 𝑥 = 0        𝑇 = 𝑇𝑏 

𝑇 − 𝑇∞ = 𝑇𝑏 − 𝑇∞ = 𝜃b sub. in Eq. (1) 

𝜃b = 𝐶1𝑒𝑚∗0 + 𝐶2𝑒−𝑚∗0 

𝜃b = 𝐶1 + 𝐶2                             (2) 

B.C 2: 𝑎𝑡 𝑥 = L        𝑞𝑐𝑜𝑛𝑑 = 𝑞𝑐𝑜𝑛𝑣 

−𝑘𝐴
𝑑𝜃

𝑑𝑥
]

𝑥=𝐿
= ℎ𝐴(𝑇 − 𝑇∞)𝑥=𝐿 

−𝑘(𝑚𝐶1𝑒𝑚𝐿 − 𝑚𝐶2𝑒−𝑚𝐿) = ℎ(𝐶1𝑒𝑚𝐿 + 𝐶2𝑒−𝑚𝐿)   Divided by (−𝑘𝑚) 

𝐶1𝑒𝑚𝐿 (1 +
ℎ

𝑘𝑚
) = 𝐶2𝑒−𝑚𝐿(1 −

ℎ

𝑘𝑚
) 

𝐶1 =
𝐶2𝑒−𝑚𝐿(1−

ℎ

𝑘𝑚
)

𝑒𝑚𝐿(1+
ℎ

𝑘𝑚
)

                          (3)      sub. in Eq. (2)  

𝜃b =
𝐶2𝑒−𝑚𝐿(1 −

ℎ

𝑘𝑚
)

𝑒𝑚𝐿 (1 +
ℎ

𝑘𝑚
)

+ 𝐶2 

𝐶2 =
𝑒𝑚𝐿 (1 +

ℎ

𝑘𝑚
) 𝜃b

𝑒𝑚𝐿 (1 +
ℎ

𝑘𝑚
) + 𝑒−𝑚𝐿 (1 −

ℎ

𝑘𝑚
)

       sub. in Eq. (3) 
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𝐶1 =
𝑒−𝑚𝐿(1 −

ℎ

𝑘𝑚
)𝑒𝑚𝐿 (1 +

ℎ

𝑘𝑚
) 𝜃b

𝑒𝑚𝐿 (1 +
ℎ

𝑘𝑚
) [𝑒𝑚𝐿 (1 +

ℎ

𝑘𝑚
) + 𝑒−𝑚𝐿 (1 −

ℎ

𝑘𝑚
)]

 

𝐶1 =
𝑒−𝑚𝐿(1 −

ℎ

𝑘𝑚
)𝜃b

𝑒𝑚𝐿 (1 +
ℎ

𝑘𝑚
) + 𝑒−𝑚𝐿 (1 −

ℎ

𝑘𝑚
)
 

Sub. 𝐶1 and 𝐶2 in Eq. (11) 

𝜃 =
𝑒−𝑚𝐿(1 −

ℎ

𝑘𝑚
)𝜃b

𝑒𝑚𝐿 (1 +
ℎ

𝑘𝑚
) + 𝑒−𝑚𝐿 (1 −

ℎ

𝑘𝑚
)

𝑒𝑚𝑥 +
𝑒𝑚𝐿 (1 +

ℎ

𝑘𝑚
) 𝜃b

𝑒𝑚𝐿 (1 +
ℎ

𝑘𝑚
) + 𝑒−𝑚𝐿 (1 −

ℎ

𝑘𝑚
)

𝑒−𝑚𝑥 

sinh 𝑥 =
𝑒𝑥 − 𝑒−𝑥

2
                      𝑎𝑛𝑑                  cosh 𝑥 =

𝑒𝑥 + 𝑒−𝑥

2
 

𝜃

𝜃b
=

𝑒−𝑚(𝐿−𝑥) (1 −
ℎ

𝑘𝑚
) + 𝑒𝑚(𝐿−𝑥) (1 +

ℎ

𝑘𝑚
)

𝑒𝑚𝐿 (1 +
ℎ

𝑘𝑚
) + 𝑒−𝑚𝐿 (1 −

ℎ

𝑘𝑚
)

∗
2

2
  

𝜃

𝜃b
=

cosh 𝑚(𝐿 − 𝑥) +
ℎ

𝑘𝑚
sinh 𝑚(𝐿 − 𝑥)

cosh(𝑚𝐿) +
ℎ

𝑘𝑚
sinh(𝑚𝐿)

                                                          (3.28) 

𝑞 = −𝑘𝐴 
𝑑𝑇

𝑑𝑥
]

𝑥=0
= −𝑘𝐴 

𝑑𝜃

𝑑𝑥
]

𝑥=0
 

𝑞 = −𝑘𝐴 ∗
𝜃b [−𝑚 sinh 𝑚(𝐿 − 𝑥) +

ℎ

𝑘𝑚
∗ −𝑚 cosh 𝑚(𝐿 − 𝑥)]

cosh(𝑚𝐿) +
ℎ

𝑘𝑚
sinh(𝑚𝐿)

 ]

𝑥=0

 

𝑞 = √𝑘𝐴𝑐ℎ𝑃𝜃b [
sinh 𝑚𝐿 +

ℎ

𝑘𝑚
cosh 𝑚𝐿

cosh(𝑚𝐿) +
ℎ

𝑘𝑚
sinh(𝑚𝐿)

]                                                            (3.29) 
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CASE (3): The end of the fin is insulated so that 

𝑑𝜃

𝑑𝑥
= 0  at  𝑥 = 𝐿 

 
𝜃 = 𝐶1𝑒𝑚𝑥 + 𝐶2𝑒−𝑚𝑥                   (1)   

B.C 1: 𝑎𝑡 𝑥 = 0        𝑇 = 𝑇𝑏 

𝑇 − 𝑇∞ = 𝑇𝑏 − 𝑇∞ = 𝜃b sub. in Eq. (1) 

𝜃b = 𝐶1𝑒𝑚∗0 + 𝐶2𝑒−𝑚∗0 

𝜃b = 𝐶1 + 𝐶2                                  (2)  

𝐁. 𝐂 𝟐: 𝑎𝑡 𝑥 = L           
𝑑𝜃

𝑑𝑥
= 0 

𝑑𝜃

𝑑𝑥
= 0 = 𝑚𝐶1𝑒𝑚𝐿 − 𝑚𝐶2𝑒−𝑚𝐿 

𝐶1 = 𝐶2

𝑒−𝑚𝐿

𝑒𝑚𝐿
     sub. in Eq. (2) 

𝜃b = 𝐶2

𝑒−𝑚𝐿

𝑒𝑚𝐿
+ 𝐶2  

𝐶2 =
𝜃b𝑒𝑚𝐿

𝑒𝑚𝐿 + 𝑒−𝑚𝐿
 

𝐶1 =
𝜃b𝑒−𝑚𝐿

𝑒𝑚𝐿 + 𝑒−𝑚𝐿
 

Sub. 𝐶1 and 𝐶2 in Eq. (1) 

𝜃 =
𝜃b𝑒−𝑚𝐿

𝑒𝑚𝐿 + 𝑒−𝑚𝐿
𝑒𝑚𝑥 +

𝜃b𝑒𝑚𝐿

𝑒𝑚𝐿 + 𝑒−𝑚𝐿
𝑒−𝑚𝑥 
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𝜃

𝜃𝑏
=

𝑒−𝑚(𝐿−𝑥) + 𝑒𝑚(𝐿−𝑥)

𝑒𝑚𝐿 + 𝑒−𝑚𝐿
∗

2

2
      

𝜃

𝜃𝑏
=

cosh 𝑚(𝐿 − 𝑥)

cosh 𝑚𝐿
                                                                   (3.30) 

𝑞 = −𝑘𝐴 
𝑑𝑇

𝑑𝑥
]

𝑥=0
= −𝑘𝐴 

𝑑𝜃

𝑑𝑥
]

𝑥=0
 

𝑞 = −𝑘𝐴𝜃b

−𝑚 sinh 𝑚(𝐿 − 𝑥)

cosh 𝑚𝐿
]

𝑥=0
   

𝑞 = √𝑘𝐴𝑐ℎ𝑃𝜃b

sinh 𝑚𝐿

cosh 𝑚𝐿
= √𝑘𝐴ℎ𝑃𝜃b tanh 𝑚𝐿                     (3.31) 

CASE (4): The temperature at the end of the fin is fixed. 

 

𝜃 = 𝐶1𝑒𝑚𝑥 + 𝐶2𝑒−𝑚𝑥                    (1)   

B.C 1: 𝑎𝑡 𝑥 = 0        𝑇 = 𝑇𝑏 

𝑇 − 𝑇∞ = 𝑇𝑏 − 𝑇∞ = 𝜃b sub. in Eq. (1) 

𝜃b = 𝐶1𝑒𝑚∗0 + 𝐶2𝑒−𝑚∗0 

𝜃b = 𝐶1 + 𝐶2                                    (2 ) 

B.C 2: 𝑎𝑡 𝑥 = L        𝑇 = 𝑇∞ 

𝑇 − 𝑇∞ = 𝑇L − 𝑇∞ = 𝜃𝐿     sub. in Eq. (1) 

𝜃𝐿 = 𝐶1𝑒𝑚𝐿 + 𝐶2𝑒−𝑚𝐿       

𝐶1 =
𝜃𝐿 − 𝐶2𝑒−𝑚𝐿

𝑒𝑚𝐿
      sub. in Eq. (2) 
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𝜃b =
𝜃𝐿 − 𝐶2𝑒−𝑚𝐿

𝑒𝑚𝐿
+ 𝐶2 

∴ 𝐶2 =
𝜃𝑏𝑒𝑚𝐿 − 𝜃𝐿

𝑒𝑚𝐿 − 𝑒−𝑚𝐿
 

𝐶1 =
𝜃𝐿 −

𝜃𝑏𝑒𝑚𝐿−𝜃𝐿

𝑒𝑚𝐿−𝑒−𝑚𝐿
𝑒−𝑚𝐿

𝑒𝑚𝐿
 

𝐶1 =
(𝑒𝑚𝐿𝜃𝐿 − 𝑒−𝑚𝐿𝜃𝐿) + (−𝜃𝑏𝑒𝑚𝐿𝑒−𝑚𝐿 + 𝜃𝐿𝑒−𝑚𝐿)

(𝑒𝑚𝐿 − 𝑒−𝑚𝐿)𝑒𝑚𝐿
 

𝐶1 =
𝜃𝐿 − 𝜃𝑏𝑒−𝑚𝐿

𝑒𝑚𝐿 − 𝑒−𝑚𝐿
 

Sub. 𝐶1 and 𝐶2 in Eq. (1) 

𝜃 =
𝜃𝐿 − 𝜃𝑏𝑒−𝑚𝐿

𝑒𝑚𝐿 − 𝑒−𝑚𝐿
𝑒𝑚𝑥 +

𝜃𝑏𝑒𝑚𝐿 − 𝜃𝐿

𝑒𝑚𝐿 − 𝑒−𝑚𝐿
𝑒−𝑚𝑥 

  

𝜃 = 𝜃𝑏 [
(𝜃𝐿 𝜃𝑏⁄ ) sinh 𝑚𝑥 + sinh 𝑚(𝐿 − 𝑥)

sinh 𝑚𝐿
]                                                   (3.32) 

𝑞 = −𝑘𝐴 
𝑑𝑇

𝑑𝑥
]

𝑥=0
= −𝑘𝐴 

𝑑𝜃

𝑑𝑥
]

𝑥=0
 

𝑞 = −𝑘𝐴𝜃𝑏 [
{(𝜃𝐿 𝜃𝑏⁄ )𝑚 cosh 𝑚𝑥 + (−𝑚) cosh 𝑚(𝐿 − 𝑥)} sinh 𝑚𝐿

(sinh 𝑚𝐿)2
]]

𝑥=0

 

𝑞 = −𝑘𝐴𝜃𝑏 [
{(𝜃𝐿 𝜃𝑏⁄ )𝑚 − 𝑚 cosh 𝑚𝐿}

sinh 𝑚𝐿
] 

𝑞 = 𝑘𝐴𝜃𝑏𝑚 [
cosh 𝑚𝐿 − (𝜃𝐿 𝜃𝑏⁄ )

sinh 𝑚𝐿
] 

𝑞 = √𝑘𝐴𝑐ℎ𝑝𝜃𝑏 [
cosh 𝑚𝐿 − (𝜃𝐿 𝜃𝑏⁄ )

sinh 𝑚𝐿
]                                                              (3.33) 
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Note: 

Rectangular fin Pin fin 

𝑷 = 𝟐𝑾 + 𝟐𝒕 𝑃 = 𝜋𝐷 

𝑨𝒄 = 𝑾𝒕 𝐴𝑐 =
𝜋

4
𝐷2 

Example (3.8): A very long rod (5 mm) in diameter has one end maintained at (100 °C). 

The surface of the rod is exposed to ambient air at (25 °C) with a convection heat transfer 

coefficient of (100 W/m2. K). Determine the temperature distributions along rods 

constructed from pure copper (k= 398 W/m. K). What are the corresponding heat losses 

from the rods? 

Solution: 

The temperature distributions are determined from CASE (1) Eq. (3.26), which may be 

expressed as 

𝜃

𝜃𝑏
=

𝑇 − 𝑇∞

𝑇𝑏 − 𝑇∞
= 𝑒−𝑚𝑥                               (3.26) 

𝑇 = 𝑇∞ + (𝑇𝑏 − 𝑇∞)𝑒−𝑚𝑥 

𝑞 = √𝑘𝐴ℎ𝑃𝜃b       

𝑞 = √𝑘 ∗
𝜋

4
𝐷2 ∗ ℎ ∗ 𝜋𝐷(𝑇𝑏 − 𝑇∞)       

𝑞 = √398 ∗
𝜋

4
(0.005)2 ∗ 100 ∗ 𝜋 ∗ 0.005(100 − 25)       

𝑞 = 8.3 𝑊 

3.6 Fin Performance 

1- Fin Effectiveness (𝜺𝒇): It is defined as the ratio of the fin heat transfer rate to the heat 

transfer rate that would exist without the fin. Therefore 

𝜀𝑓 =
𝑞𝑓𝑖𝑛

ℎ𝐴𝑐𝜃𝑏
                                                                        (3.34) 

where 𝐴𝑐 is the fin cross-sectional area at the base. The use of fins may rarely be justified 

unless 𝜀𝑓 ≥ 2. 
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2- Fin Efficiency (Ƞ𝒇): 

Ƞ𝑓 =
𝑞𝑓𝑖𝑛

𝑞𝑚𝑎𝑥
=

𝑞𝑓𝑖𝑛

ℎ𝐴𝑓𝜃𝑏
                                                         (3.35) 

Where 𝐴𝑓 is the surface area of the fin. 

For a straight fin of uniform cross-section and an adiabatic tip, yield 

Ƞ𝑓 =
tanh 𝑚𝐿

𝑚𝐿
                                                                   (3.36) 

Another method to find the fin efficiency (Ƞ𝒇) is: 

 

Figure (3.19) Efficiency of Straight Fins (Rectangular, Triangular, and Parabolic Profiles). 
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Figure (3.20) Efficiency of Annular Fins of Rectangular Profile. 

Example (3.9): The extent to which the tip condition affects the thermal performance of a 

fin depends on the fin geometry and thermal conductivity, as well as the convection 

coefficient. Consider an alloyed aluminum (k =180 W/m. K) rectangular fin whose base 

temperature is 𝑇𝑏 =  100 ℃. The fin is exposed to a fluid of temperature 𝑇∞ = 25℃, and a 

uniform convection coefficient of (ℎ = 100 𝑊/𝑚2. 𝐾) may be assumed for the fin surface. 

For a fin of length (𝐿 = 10 𝑚𝑚), thickness (𝑡 = 1 𝑚𝑚), and width (𝑤 ≫ 𝑡), determine 

the fin heat transfer rate per unit width, efficiency ( Ƞ𝑓 ) , effectiveness (𝜀𝑓 ) and tip 

temperature (𝑇𝐿). 

Solution: 

 

𝑞 = √𝑘𝐴𝑐ℎ𝑃𝜃b [
sinh 𝑚𝐿 +

ℎ

𝑘𝑚
cosh 𝑚𝐿

cosh(𝑚𝐿) +
ℎ

𝑘𝑚
sinh(𝑚𝐿)

] 

𝐴𝑐 = 𝑊𝑡 = 1 ∗ 0.001 = 0.001 𝑚2 

𝑃 = 2𝑊 + 2𝑡 = 2(1 + 0.001) = 2.002 𝑚 



    

      

Al-Mustaqbal University College                          24                        http://www.mustaqbal-college.edu.iq/ 

Class: 3rd  

Subject: Heat Transfer 
Lecturer: Dr. Athraa Al-Abbasi 

E-mail: Dr.AthraaHameed@mustaqbal-

college.edu.iq 

  

 

𝑚 = √
ℎ𝑃

𝑘𝐴𝑐
= √

100 ∗ 2.002

180 ∗ 0.001
= 33.35 

𝑞′ = √180 ∗ 0.001 ∗ 100 ∗ 2.002(100

− 25) [
sinh 33.35 ∗ 0.01 +

100

180∗33.35
cosh 33.35 ∗ 0.01

cosh(33.35 ∗ 0.01) +
100

180∗33.35
sinh(33.35 ∗ 0.01)

] 

𝑞′ = 450.22 ∗ [
0.339 + 0.016 ∗ 1.056

1.056 +0.016 ∗ 0.339
] 

𝑞′ = 150.96 𝑊/𝑚 

 

𝜀𝑓 =
𝑞𝑓𝑖𝑛

ℎ𝐴𝑐𝜃𝑏
=

150.96

100 ∗ 0.001 ∗ (100 − 25)
 

𝜀𝑓 = 20.13 

 

𝐴𝑓 = 2𝐿 + 𝑡 = 2 ∗ 0.01 + 0.001 = 0.021 𝑚2 

Ƞ𝑓 =
𝑞𝑓𝑖𝑛

𝑞𝑚𝑎𝑥
=

𝑞𝑓𝑖𝑛

ℎ𝐴𝑓𝜃𝑏
=

150.96

100 ∗ 0.021 ∗ (100 − 25)
 

Ƞ𝑓 = 95.85 % 

𝜃

𝜃b
=

𝑇𝐿 − 𝑇∞

𝑇𝑏 − 𝑇∞
=

cosh 𝑚(𝐿 − 𝑥) +
ℎ

𝑘𝑚
sinh 𝑚(𝐿 − 𝑥)

cosh(𝑚𝐿) +
ℎ

𝑘𝑚
sinh(𝑚𝐿)

 

𝑇𝐿 − 25

100 − 25
=

cosh 𝑚(𝐿 − 𝐿) +
ℎ

𝑘𝑚
sinh 𝑚(𝐿 − 𝐿)

cosh(33.35 ∗ 0.01) +
100

180∗33.35
sinh(33.35 ∗ 0.01)

 

𝑇𝐿 − 25

100 − 25
=

1 + 0

1.056 +0.016 ∗ 0.339
 

𝑇𝐿 = 95.69 ℃  
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Home Work (3): 

1- The rear window of an automobile is defogged by passing warm air over its inner surface 

with (k = 1.4 W/m⋅ K.). If the warm air is at (𝑇∞,𝑖  = 40 °𝐶)  and the corresponding 

convection coefficient is (ℎ𝑖 = 30 𝑊/𝑚2 . 𝐾) , what are the inner and outer surface 

temperatures of (4 mm) thick window glass if the outside ambient air temperature is 

(𝑇∞,0  = −10 °C) and the associated convection coefficient is (ℎ0 = 65 𝑊/𝑚2 . 𝐾)? 

2- The walls of a refrigerator are typically constructed by sandwiching a layer of insulation 

between sheet metal panels. Consider a wall made from fiberglass insulation of thermal 

conductivity (𝑘𝑖 =  0.046 𝑊/𝑚. 𝐾) and thickness (𝐿𝑖 =  50 𝑚𝑚) and steel panels, each of 

thermal conductivity (𝑘𝑝 =  60 𝑊/𝑚 . 𝐾)  and thickness (𝐿𝑝 =  3 𝑚𝑚) . If the wall 

separates refrigerated air at (𝑇∞,𝑖 = 4 ℃) from ambient air at (𝑇∞,0 = 25 ℃), what is the 

heat gain per unit surface area? Coefficients associated with natural convection at the inner 

and outer surfaces may be approximated as (ℎ𝑖 = ℎ0 = 5 𝑊/𝑚2. 𝐾). 

3- The wind chill, which is experienced on a cold, windy day, is related to increased heat 

transfer from exposed human skin to the surrounding atmosphere. Consider a layer of fatty 

tissue that is (3 mm) thick with (k = 0.2 W/m⋅ K.) and whose interior surface is maintained 

at a temperature of (36 °C). On a calm day the convection heat transfer coefficient at the 

outer surface is (25 W/m2. K), but with (30 km/h) winds it reaches (65 W/m2. K). In both 

cases the ambient air temperature is (15 °C). 

(a) What is the heat loss per unit area from the skin for the calm day and that for the windy 

day? 

(b) What will be the skin outer surface temperature for the calm day? For the windy day? 

4- The composite wall of an oven consists of three materials as shown below, two of which 

are of known thermal conductivity, (𝑘𝐴 =  20 𝑊/𝑚. 𝐾)  and (𝑘𝐶  = 50 𝑊/𝑚. 𝐾) , and 

known thickness, (𝐿𝐴  = 0.30 𝑚)  and (𝐿𝐶 = 0.15 𝑚) . The third material, B, which is 

sandwiched between materials A and C, is of known 

thickness, (𝐿𝐵 = 0.15 𝑚) , but unknown thermal 

conductivity 𝑘𝐵 . Under steady-state operating 

conditions, measurements reveal an outer surface 

temperature of (𝑇𝑠,𝑜  = 20 °𝐶) , an inner surface 

temperature of (𝑇𝑠,𝑖 = 600 °𝐶) , and an oven air 

temperature of 𝑇∞ =  800 °𝐶. The inside convection 

coefficient (h) is known to be (25 𝑊/𝑚2 . 𝐾). What is the value of (𝑘𝐵)? 



    

      

Al-Mustaqbal University College                          26                        http://www.mustaqbal-college.edu.iq/ 

Class: 3rd  

Subject: Heat Transfer 
Lecturer: Dr. Athraa Al-Abbasi 

E-mail: Dr.AthraaHameed@mustaqbal-

college.edu.iq 

  

 

5- A stainless steel tube with (𝑘𝑠𝑡 =  14.2 𝑊/𝑚. 𝐾)  used to transport a chilled 

pharmaceutical has an inner diameter of (36 mm) and a wall thickness of (2 mm). The 

pharmaceutical and ambient air are at temperatures of (6 °C and 23 °C), respectively, while 

the corresponding inner and outer convection coefficients are (400 W/m2.  K) and  (6 W/m2.  

K), respectively. 

(a) What is the heat gain per unit tube length? 

(b) What is the heat gain per unit length if a 10 mm thick layer of calcium silicate insulation 

(𝑘𝑖𝑛𝑠 =  0.050 𝑊/𝑚. 𝐾) is applied to the tube? 

6- Air flows at (120 °C) in a thin wall stainless steel tube with (h = 65 W/m2. °C). The inside 

diameter of the tube is (2.5 cm) and the wall thickness is (0.4 mm). The tube is exposed to 

an environment with (h = 6.5 W/m2. °C) and (T∞ = 15 °C). The thermal conductivity of the 

steel is (k = 18 W/m. °C). Calculate the overall heat transfer coefficient and the heat loss 

per meter of length. 

7- A hollow aluminum sphere of (k=230 W/m. K), with an electrical heater in the center, is 

used in tests to determine the thermal conductivity of insulating materials. The inner and 

outer radii of the sphere are (0.15) and (0.18 m), respectively, and testing is done under 

steady-state conditions with the inner surface of the aluminum maintained at (250 °C). In a 

particular test, a spherical shell of insulation is cast on the outer surface of the sphere to a 

thickness of (0.12 m). The system is in a room for which the air temperature is (20 °C) and 

the convection coefficient at the outer surface of the insulation is (30 W/m2. K). If (80 W) 

is dissipated by the heater under steady-state conditions, what is the thermal conductivity of 

the insulation? 

8- Aspherical vessel used as a reactor for producing pharmaceuticals has a (10 mm) thick 

stainless steel wall (k= 17 W/m. K) and an inner diameter of (l m). The exterior surface of 

the vessel is exposed to ambient air (T∞ =25 °C) for which a convection coefficient of        (6 

W/m2. K) may be assumed. 

(a) During steady-state operation, an inner surface temperature of 50 °C is maintained by 

energy generated within the reactor. What is the heat loss from the vessel? 

(b) If a (20 mm) thick layer of fiberglass insulation (k= 0.040 W/m. K) is applied to the 

exterior of the vessel and the rate of thermal energy generation is unchanged, what is the 

inner surface temperature of the vessel? 
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9- Calculate the critical radius of insulation for asbestos (k = 0.172 W/m. K) surrounding a 

pipe and exposed to room air at (300 K) with (h = 2.8 W/m2. K). Calculate the heat loss 

from a (475 K), (60 mm) diameter pipe when covered with the critical radius of insulation 

and without insulation. 

10- Find the amount of heat transferred through an iron fin of length (50 mm), width    (100 

mm) and thickness of (5 mm). Assume (k=210 W/m. °C) and (h=42 W/m2. °C) for the 

material of the fin and the temperature at the base of the fin is (80 °C) and the surrounding 

temperature is (20 °C). Also, determine efficiency ( Ƞ𝑓 ), effectiveness ( 𝜀𝑓 ) and tip 

temperature 𝑇𝐿. Assume the tip of the fin is insulation. 

11- A straight fin of the rectangular profile has a thermal conductivity of (14 W/m. °C), the 

thickness of (2 mm), and length of (23 mm). The base of the fin is maintained at a 

temperature of (220 °C) while the fin is exposed to a convection environment at (23 °C) 

with (h = 25 W/m2. °C). Calculate the fin heat transfer rate per meter of fin depth, efficiency 

(Ƞ𝑓) and effectiveness (𝜀𝑓). 

12- A (40 mm) long, (2 mm) diameter pin fin is fabricated of an aluminum alloy (k=140 

W/m. K). 

(a) Determine the fin heat transfer rate and effectiveness (𝜀𝑓 ) for(𝑇𝑏 = 50 ℃), (𝑇∞ =

 25 ℃), (ℎ = 1000 𝑊/𝑚2. 𝐾), and an adiabatic tip condition. 

(b) An engineer suggests that by holding the fin tip at a low temperature, the fin heat transfer 

rate can be increased. For 𝑇(𝑥 = 𝐿) =  0 ℃, determine the new fin heat transfer rate. Other 

conditions are as in part (a). 

13- An experimental arrangement for measuring the thermal conductivity of solid materials 

involves the use of two long rods that are equivalent in every respect, except that one is 

fabricated from a standard material of known thermal conductivity (𝑘𝐴) while the other is 

fabricated from the material whose thermal conductivity (𝑘𝐵) is desired. Both rods are 

attached at one end to a heat source of fixed temperature (𝑇𝐵), are exposed to a fluid of 

temperature (𝑇∞), and are instrumented with thermocouples to measure the temperature at 

a fixed distance (𝑥1) from the heat source. If the standard material is aluminum, with 

(𝑘𝐴 = 200 W/m. K), and measurements reveal values of (𝑇𝐴 = 75 °C ) and (𝑇𝐵 = 60 °C) 

at (𝑥1)for (𝑇𝑏 = 100 °C) and (𝑇∞ = 25°C), what is the thermal conductivity (𝑘𝐵) of the 

test material? 


