Radiation Physics

Hussein Ali Madlool

Radiology Techniques Department 2nd Class Al-Mustaqbal University college

Lecture 6: production of X-Ray (Quality and Quantity of X-Ray)

2020/2021

1-Quality and Quantity of X-Ray

1.1 Quality of X-Ray

- The term quality describes the penetrating power of the radiation.
- Altering the penetrating power of the x-ray beam affects its absorption and transmission through the anatomic tissue being radiographed.

1.2 Quantity of X-Ray

The intensity is a measure of quantity of radiation. The term exposure is often used in radiology.

• The term quantity refers the number of X-ray photons in the beam.

Factors Affecting Quality and Quantity

A number of factors that affect the X-ray production efficiency, quality, quantity may be considered.

1-Tube Voltage (kVp)

• The applied voltage affects both the quality and intensity of the X-rays.

Two factors contribute to this increase:

First the electrons have more energy to lose when they hit the target.

Second, as shown in Table 1, the efficiency of conversion of electrons into X-rays rather than into heat also increases with tube kilovoltage.

Table 1: Efficiency of converting electron energy into x rays as a function oftube Kilovoltage

Tube Kilovoltage (kV)	Heat (%)	X-rays (%)
60	99.5	0.5
200	99	1.0
4000	60	40

2-Tube Current (mA)

This determines the number of electrons striking the anode. But only the quantity of X-rays is affected.

3-Time of Exposure

Determines the length of X-ray production. The total quantity of X-rays is directly proportional to the product of the tube current and exposure time (mAs). Only the quantity of X-rays is affected.

4-Waveform of Applied Voltage

Most effective at high energy and also quantity

5-Filtration

The effect on both the quantity and quality of the X-ray beam, by reducing the overall output but also reducing the proportion of low energy photons.

6-Target Material (Z)

The atomic number of the target material affects the intensity of the X-rays. The atomic number of the target material also determines the energy (quality) of characteristic X-rays.

Table 2: Electron Shell Binding Energies (keV)

Shell	Molybdenum ($Z = 42$)	Tungsten ($Z = 74$)
K	20	69
L	2.9, 2.6, 2.5 ⁴	12, 11, 10
M	0.50, 0.41, 0.39, 0.23, 0.22	2.8, 2.6, 2.3, 1.9, 1.8

Effect of kVp (Kilovolt Peak)

• The amount of radiation produced increases as the square of the kilo voltage,

i.e. Radiation exposure (E) $\propto (kVp)^2$

- Thus, increase in kVp increases the quality, quantity and efficiency of X-ray production.
- The position of any characteristic lines will not change (see figure).

Figure 1: Effect of tube kilovoltage on X-ray spectra

in other words, if were doubled, the x-ray intensity would increase by a factor of four.

$$\frac{l_1}{l_2} = \left(\frac{kVp_1}{kVp_2}\right)^2$$

Where I_1 and I_2 are the X-ray intensities at kVp_1 and kVp_2 , respectively.

Example: A lateral chest technique Calls For <u>HokVp</u>, 20 mAs and results in an X-ray intensity of 32 mR · what will the <u>intensity</u> be if the KVP increased to <u>125</u> and the mAs remains fixed ? $\frac{I}{I_2} = \left(\frac{k VP}{kVp}\right)^2$ $\frac{I}{32mR} = \left(\frac{125 kVP}{HokVP}\right)^2 \neq (32 mR)$ $= (1.4)^2 (32mR)$

Effect of Amperage (mA and mAs)

• The number of electrons depends directly on the tube current (mA) used.

greater the mA \rightarrow high electrons that hit the target \rightarrow high X-rays produced

• The tube current affects only the quantity or the amount of x-ray photons produced but not the quality of the X-rays.

i.e. the intensity is ∞ mA.

Increase of applied voltage is compensated by the reduction of tube current, which is required to maintain same exposure.

Figure 2: Relationship between kV, mA and energy.

To calculate the mAs, you multiply

Milliamperage $(1/1000 \text{ of an amp}) \times \text{time}$ (in seconds)

 $\boldsymbol{m}\boldsymbol{A}\times\boldsymbol{s}$

For example

mA=100,
$$s = 0.25.5$$

mAs = $100 \times 1.5 = 150$

Example : Calculate the total number of electrons bombarding the target of an x-ray tube operated at 200 mA for 0.1 sec.

- The ampere, the unit of electrical current, equals 1 coulomb/sec.
- The product of current and time equals the total charge in coulombs.
- X-ray tube current is measured in milliamperes, where $1 \text{ mA} = 10^{-3} \text{ amp.}$
- The charge of the electron is 1.6×10^{-19} coulombs, so

$$1 \text{ mA} \cdot \text{s} = \frac{(10^{-3} \text{ coulomb/sec})(\text{sec})}{1.6 \times 10^{-19} \text{ coulomb/electron}} = 6.25 \times 10^{15} \text{ electrons}$$

No. of electron = $(200 \text{ mA})(0.1 \text{ sec})(6.25 \times 10^{15} \text{ electrons/mA.sec})$ = $1.25 \times 10^{17} \text{ electrons}$

When the mAs is doubled, the number of electrons striking the tube target is doubled, and therefore the number of x-rays emitted is doubled.

Example:
A lateral chest texhnique calls for look
$$V_P$$

20 mAs. Which results in an X-ray intensity
of the position of the patient.
if the mAs is reduced to 15 what will the
X-ray intensity be?
 $I_i = \frac{15 \text{ mAs}}{20 \text{ mAs}}$
 $I_z = \frac{15 \text{ mAs}}{20 \text{ mAs}}$
 $I_s = \frac{(15 \text{ mAs} \times 32 \text{ mR})}{20 \text{ mAs}}$
 $I_s = 24 \text{ mR}$

$$\frac{I_1}{I_2} = \frac{mAs_1}{mAs_2}$$

Effect of Added Filtration

- Filters are thin sheet of material (Al,Cu).
- The purpose of using filter is to reduce patient exposure at the skin level.
- Filters alter both the quality and quantity of X-rays by selectively removing the low energy photons in the spectrum.
- This reduces the photon number (quantity) and shifts the average energy to higher values by increasing the quality.

Figure 3: Effect of filter on X-ray spectra