

Example (4): A rigid tank contains saturated liquid water at (95 °C). Determine the pressure in the tank and the specific volume of the water.

Solution:

Saturated water @ T = 95 °C \Rightarrow Table (A – 4) \Rightarrow P = P_{sat} = 84.609 kPa Saturated water @ T = 95 °C \Rightarrow Table (A – 4) \Rightarrow v = v_f = 0.001040 kg/m³

Example (5): Determine the specific volume, internal energy, enthalpy and entropy for a mixture of (10 %) quality at (0.15 MPa).

Given, $x = 0.1$	
@ P = 0.15 MPa = 150 kPa \Rightarrow Table (A − 5)	
$v_g = 1.1593 \text{ m}^3/\text{kg}$	
$u_f = 466.94 \text{ kJ/kg},$	$u_{fg} = 2052.7 \text{ kJ/kg}$
$h_f = 467.11 \text{ kJ/kg},$	$h_{fg} = 2226.5 \text{ kJ/kg}$
$s_f = 1.4336 \text{ kJ/kg. K},$	$s_{fg} = 5.7897 \text{ kJ/kg. K}$
Specific volume, $v = x \cdot v_g$	
$= 0.1 \times 1.159 = 0.1159 \text{ m}^3/\text{kg}$	
Internal energy, $u = u_f + x \cdot u_{fg}$	
$= 466.94 + 0.1 \times 2052.7 = 672.21 \text{ kJ/kg}$	
Enthalpy, $h = h_f + x \cdot h_{fg}$	
$= 467.11 + 0.1 \times 2226.5 = 689.759 \text{ kJ/kg}$	

Class:First Stage Subject: Thermodynamics Lecturer: Dr. Athraa Al-Abbasi E-mail: Dr.AthraaHameed@mustaqbal-college.edu.iq

Entropy, $s = s_f + x \cdot s_{fg}$

 $= 1.4336 + 0.1 \times 5.7897 = 2.01257 \text{ kJ/kg. K}$

Example (6): Determine the temperature of superheated steam at a state of (0.5 MPa) and enthalpy (2960.7 kJ/kg).

Solution:

@ $P = 0.5 MPa \& h = 2960.7 \text{ kJ/kg} \Rightarrow Table (A - 6) \Rightarrow T = 250 \text{ °C}$

Example (7): Determine the phase for each of the following water states:

- a. 120 °C, 500 kPa
- b. 120 °C, 0.5 m³/kg

Solution:

(a) @ T = 120 °C & P = 500 KPa \Rightarrow Table (A - 4)

 $\Rightarrow @ T = 120 \ ^{\circ}C \Rightarrow P_{sat} = 198.5 kPa < P \Rightarrow \text{compretssed liquid}$

We could also have used Table (A-5)

 $@P = 500 \ kPa \Rightarrow Table (A - 5) \Rightarrow Tsat = 151.86^{\circ}C > T \Rightarrow compressed liquid$

(b) @ T = 120 °C \Rightarrow Table (A – 4) $\Rightarrow v_f = 0.00106 \text{ m}^3/\text{kg} \& v_g = 0.89133 \text{ m}^3/\text{kg}$

 $v_f < v < v_g \Rightarrow$ two phase mixture of liquid and vapor

Class:First Stage Subject: Thermodynamics Lecturer: Dr. Athraa Al-Abbasi E-mail: Dr.AthraaHameed@mustaqbal-college.edu.iq

Example (8): Determine the temperature for water at a pressure of (300 kPa) and (1 m³/kg). **Solution:**

$$@P = 300 \ kPa \Rightarrow \text{Table} (A-5) \Rightarrow v_g = 0.60582 \ \text{m}^3/\text{kg} \Rightarrow v > v_g$$

 \Rightarrow superheated vapor

 $@P = 300 \ kPa = 0.3 \ MPa \ \&v = 1 \ m^3/kg \Rightarrow \text{Table} (A - 6) \Rightarrow T$

T can be found by interpolation between 300°C and 400°C at 300 kPa.

 $\frac{T - 300}{400 - 300} = \frac{1 - 0.8753}{1.0315 - 0.8753}$ $T = 379.8^{\circ}C$ Ans.

HOMEWORK (4)

1- A (1.8 m³) rigid tank contains steam at (220°C). Onethird of the volume is in the liquid phase and the rest is in the vapor form. Determine (*a*) the pressure of the steam, (*b*) the quality of the saturated mixture, and (*c*) the density of the mixture.

2- A piston-cylinder device contains (0.1 m^3) of liquid water and (0.9 m^3) of water vapor in equilibrium at (800 kPa). Heat is transferred at constant pressure until the temperature reaches (350 °C). (*a*) What is the initial temperature of the water? (*b*) Determine the total mass of the water. (*c*) Calculate the final volume. (*d*) Show the process on a *P*-*v* diagram with respect to saturation lines.

3-A piston–cylinder device initially contains (0.05 m^3) of liquid water at (40 °C) and (200 kPa). Heat is transferred to the water at constant pressure until the entire liquid is vaporized. (*a*) What is the mass of the water? (*b*) What is the final temperature?

(c) Determine the total enthalpy change. (d) Show the process on a T-v diagram with respect to saturation lines.

4- Determine the specific volume, internal energy, and enthalpy of compressed liquid water at (100 $^{\circ}$ C) and (15 MPa) using the saturated liquid approximation.

5- A piston cylinder device contains steam initially at (1 MPa), (450 °C), and (2.5 m³). Steam is allowed to cool at constant pressure until it first starts condensing. Show the process on a T-v diagram with respect to saturation lines and determine

(a) The mass of the steam, (b) the final temperature, and (c) the amount of heat transfer.