Example (4): A rigid tank contains saturated liquid water at $\left(95^{\circ} \mathrm{C}\right)$. Determine the pressure in the tank and the specific volume of the water.

Solution:

Saturated water @ $\mathrm{T}=95^{\circ} \mathrm{C} \Rightarrow$ Table $(\mathrm{A}-4) \Rightarrow P=P_{\text {sat }}=84.609 \mathrm{kPa}$
Saturated water @ T $=95^{\circ} \mathrm{C} \Rightarrow$ Table $(\mathrm{A}-4) \Rightarrow v=v_{f}=0.001040 \mathrm{~kg} / \mathrm{m}^{3}$

Example (5): Determine the specific volume, internal energy, enthalpy and entropy for a mixture of (10%) quality at (0.15 MPa).

Given, $x=0.1$
$@ \mathrm{P}=0.15 \mathrm{MPa}=150 \mathrm{kPa} \Rightarrow$ Table $(\mathrm{A}-5)$
$v_{g}=1.1593 \mathrm{~m}^{3} / \mathrm{kg}$
$u_{f}=466.94 \mathrm{~kJ} / \mathrm{kg}, \quad u_{f g}=2052.7 \mathrm{~kJ} / \mathrm{kg}$
$h_{f}=467.11 \mathrm{~kJ} / \mathrm{kg}, \quad h_{f g}=2226.5 \mathrm{~kJ} / \mathrm{kg}$
$s_{f}=1.4336 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}, \quad s_{f g}=5.7897 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
Specific volume, $v=x . v_{g}$
$=0.1 \times 1.159=0.1159 \mathrm{~m}^{3} / \mathrm{kg}$

Internal energy, $u=u_{f}+x \cdot u_{f g}$
$=466.94+0.1 \times 2052.7=672.21 \mathrm{~kJ} / \mathrm{kg}$
Enthalpy, $h=h_{f}+x . h_{f g}$
$=467.11+0.1 \times 2226.5=689.759 \mathrm{~kJ} / \mathrm{kg}$

Entropy, $s=s_{f}+x . s_{f g}$
$=1.4336+0.1 \times 5.7897=2.01257 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
Example (6): Determine the temperature of superheated steam at a state of (0.5 MPa) and enthalpy ($2960.7 \mathrm{~kJ} / \mathrm{kg}$).

Solution:

$@ P=0.5 \mathrm{MPa} \& h=2960.7 \mathrm{~kJ} / \mathrm{kg} \Rightarrow$ Table $(A-6) \Rightarrow T=250^{\circ} \mathrm{C}$

Example (7): Determine the phase for each of the following water states:
a. $120^{\circ} \mathrm{C}, 500 \mathrm{kPa}$
b. $120^{\circ} \mathrm{C}, 0.5 \mathrm{~m}^{3} / \mathrm{kg}$

Solution:

(a) @ $\mathrm{T}=120^{\circ} \mathrm{C} \& \mathrm{P}=500 \mathrm{KPa} \Rightarrow$ Table ($\mathrm{A}-4$)
$\Rightarrow @ T=120^{\circ} \mathrm{C} \Rightarrow P_{\text {sat }}=198.5 \mathrm{kPa}<P \Rightarrow$ compretssed liquid
We could also have used Table (A-5)
$@ P=500 k P a \Rightarrow$ Table $(\mathrm{A}-5) \Rightarrow$ Tsat $=151.86^{\circ} \mathrm{C}>T \Rightarrow$ compressed liquid
(b) @ $\mathrm{T}=120^{\circ} \mathrm{C} \Rightarrow$ Table $(\mathrm{A}-4) \Rightarrow v_{f}=0.00106 \mathrm{~m}^{3} / \mathrm{kg} \& v_{g}=0.89133 \mathrm{~m}^{3} / \mathrm{kg}$ $v_{f}<v<v_{g} \Rightarrow$ two phase mixture of liquid and vapor

Class:First Stage

Example (8): Determine the temperature for water at a pressure of (300 kPa) and ($1 \mathrm{~m}^{3} / \mathrm{kg}$).

Solution:

$@ P=300 k P a \Rightarrow$ Table $(\mathrm{A}-5) \Rightarrow v_{g}=0.60582 \mathrm{~m}^{3} / \mathrm{kg} \Rightarrow v>v_{g}$
\Rightarrow superheated vapor
$@ P=300 k P a=0.3 \mathrm{MPa} \& v=1 \mathrm{~m}^{3} / \mathrm{kg} \Rightarrow$ Table $(\mathrm{A}-6) \Rightarrow T$
T can be found by interpolation between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$ at 300 kPa .

$$
\begin{aligned}
& \frac{T-300}{400-300}=\frac{1-0.8753}{1.0315-0.8753} \\
& \boldsymbol{T}=\mathbf{3 7 9 . \mathbf { 8 } ^ { \circ }} \mathbf{C} \quad \text { Ans. }
\end{aligned}
$$

Class:First Stage
Subject: Thermodynamics
Lecturer: Dr. Athraa AI-Abbasi
E-mail: Dr.AthraaHameed@mustaqbal-college.edu.iq

HOMEWORK (4)

1 - A $\left(1.8 \mathrm{~m}^{3}\right)$ rigid tank contains steam at $\left(220^{\circ} \mathrm{C}\right)$. Onethird of the volume is in the liquid phase and the rest is in the vapor form. Determine (a) the pressure of the steam, (b) the quality of the saturated mixture, and (c) the density of the mixture.

2- A piston-cylinder device contains ($0.1 \mathrm{~m}^{3}$) of liquid water and ($0.9 \mathrm{~m}^{3}$) of water vapor in equilibrium at (800 kPa). Heat is transferred at constant pressure until the temperature reaches $\left(350{ }^{\circ} \mathrm{C}\right.$). (a) What is the initial temperature of the water? (b) Determine the total mass of the water. (c) Calculate the final volume. (d) Show the process on a $P-v$ diagram with respect to saturation lines.

3-A piston-cylinder device initially contains $\left(0.05 \mathrm{~m}^{3}\right)$ of liquid water at $\left(40^{\circ} \mathrm{C}\right)$ and $(200$ $\mathrm{kPa})$. Heat is transferred to the water at constant pressure until the entire liquid is vaporized.
(a) What is the mass of the water? (b) What is the final temperature?
(c) Determine the total enthalpy change. (d) Show the process on a T - v diagram with respect to saturation lines.

4- Determine the specific volume, internal energy, and enthalpy of compressed liquid water at $\left(100^{\circ} \mathrm{C}\right)$ and (15 MPa) using the saturated liquid approximation.

5- A piston cylinder device contains steam initially at (1 MPa), $\left(450^{\circ} \mathrm{C}\right)$, and ($2.5 \mathrm{~m}^{3}$). Steam is allowed to cool at constant pressure until it first starts condensing. Show the process on a $T-v$ diagram with respect to saturation lines and determine
(a) The mass of the steam, (b) the final temperature, and (c) the amount of heat transfer.

