Problem 4

A force F of magnitude 40 N is applied to the gear. Determine the moment of F about point O.

Solution

$+2 M_{0}=r \mathrm{Fy}$
$=(0.1)\left(60 \cos 20^{\circ}\right)$
$=5.64 \mathrm{~N} \cdot \mathrm{~m}$

Problem 5

Calculate the moment of the $250 \cdot \mathrm{~N}$ force on the handle of the monkey wrench about the center of the bolt.

Solution

$+2 M_{0}=250 \cos 15^{\circ}(0.200)-250 \sin 15^{\circ}(0.030)$

$$
=48.30-1.941=46.4 \mathrm{~N} \cdot \mathrm{~m}
$$

Problem 6

A portion of a mechanical coin sorter works as follows: Pennies and dimes roll down the 200 incline, the last triangular portion of which pivots freely about a horizontal axis through O. Dimes are light enough (2.28 grams each) so that the triangular portion remains stationary, and the dimes roll into the right collection column. Pennies, on the other hand, are heavy enough (3.06 grams each) so that the triangular portion pivots clockwise, and the pennies roll into the left collection column. Determine the moment about O of the weight of the penny in terms of the slant distance s in millimeter s.

Solution

$$
\begin{aligned}
+2 M_{0} & =0.00306(9.81)\left[s \cos 20^{\circ}+(9.5+3.5) \sin 20^{\circ}\right] \\
& =0.1335+0.0282 \mathrm{~s} \mathrm{~N} \cdot \mathrm{~mm}(\mathrm{~s} \text { in } \mathrm{mm})
\end{aligned}
$$

Problem 7

The $30 \cdot \mathrm{~N}$ force P is applied perpendicular to the portion BC of the bent bar. Determine the moment of P about point B and about point A .

Solution

$+2 M_{B}=30(1.6)=48 \mathrm{~N} \cdot \mathrm{~m}$
क2 $M_{A}=30 \cos 45^{\circ}\left(1.6+1.6 \sin 45^{\circ}\right)$
$+30 \sin 45^{\circ}\left(1.6 \cos 45^{\circ}\right)=81.9 \mathrm{~N} \cdot \mathrm{~m}$

Problem 8

A force of 200 N is applied to the end of the wrench to tighten a flange bolt which holds the wheel to the axle. Determine the moment AI produced by this force about the center O of the wheel for the position of the wrench shown.

Solution

62.5 mm

$$
\begin{aligned}
d & =450-62.5 \cos 20^{\circ} \\
& =391 \mathrm{~mm} \\
\left.{ }^{+}\right)_{M} & =F d=200(0.391) \\
& =78.3 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

