Straight Aluminum Fin

EXAMPLE 2-9

An aluminum fin $\left[k=200 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right] 3.0 \mathrm{~mm}$ thick and 7.5 cm long protrudes from a wall, as in Figure 2-9. The base is maintained at $300^{\circ} \mathrm{C}$, and the ambient temperature is $50^{\circ} \mathrm{C}$ with $h=10 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}$. Calculate the heat loss from the fin per unit depth of material.

Solution:

Let neglecting the heat lost from the end

$$
\begin{aligned}
& q=\sqrt{h P k A} \theta_{0} \tanh m L \\
& P=2(W+t)=2(1+0.003)=2.006 m \\
& A=W . t=1 \times 0.003=0.003 \mathrm{~m}^{2} \\
& \theta_{0}=T_{0}-T_{\infty}=300-50=250^{\circ} \mathrm{C} \\
& m=\sqrt{\frac{h P}{k A}}=\sqrt{\frac{10 \times 2.006}{200 \times 0.003}} \cong 5.774 \\
& \therefore \\
& q=\sqrt{10 \times 2.006 \times 200 \times 0.003} \times 250 \times \tanh (5.774 \times 0.075) \\
& q=357 \text { W/m depth }
\end{aligned}
$$

Example: An experimental device that produce excess heat is supplied with pin fins to increase the rate of cooling consider a copper pin fin, 0.25 cm in diameter that produces from a wall at $95^{\circ} \mathrm{C}$ into ambient air at $25^{\circ} \mathrm{C} . h=10 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}, k=396 \mathrm{~W} / \mathrm{mK}$. Calculate the heat loss assuming that:

1- The fin is infinitely long.
2- The fin is 2.5 cm long and heat is convected from the end.
3- How long would the fin have to be for the infinitely long solution to be corrected within 5%.

Solution:

1)

$q=\sqrt{h P k A} \theta_{0}$

$P=\pi \cdot D, \quad A=\frac{\pi \cdot D^{2}}{4}$
$q=\sqrt{10 \times \pi \times 0.0025 \times 396 \times \pi / 4 \times(0.0025)^{2}} \times(95-25)=0.865 \mathrm{~W}$
2)
$q=\sqrt{h P k A} \theta_{0} \frac{\sinh m L+(h / m k) \cosh m L}{\cosh m L+(h / m k) \sinh m L} \quad=0.14 \mathrm{~W}$
3) For only 5% error

$$
\frac{\sinh m L+(h / m k) \cosh m L}{\cosh m L+(h / m k) \sinh m L} \geq 0.95
$$

Which gives $\mathrm{L} \geq 28.3 \mathrm{~cm}$

Fin Effectiveness

The effectiveness of the fin in transferring heat is given by the fin efficiency $\left(\eta_{f}\right)$.
$\eta_{f}=\frac{\text { actual heat transferred }}{\text { heat that would be transferred if entire fin area were at base temperature }}=\frac{q_{f i n}}{q_{\text {max }}}$
$q_{\text {max }}=h . A_{f} . \theta_{0}, \quad A_{f}=P . L, A_{f}=$ surface area of the fin

For case 2 :
$q_{f i n}=\sqrt{h P k A} \theta_{0} \tanh m L \Rightarrow$
$\eta_{f}=\frac{\sqrt{h P k A} \theta_{0} \tanh m L}{h P L \theta_{0}}=\frac{\tanh m L}{m L}$

Fin Performance ($\mathbf{(}$)

$\varepsilon=\frac{q \text { with fin }}{q \text { without fin }}=\frac{\eta_{f} A_{f} h \theta_{0}}{h A_{b} \theta_{0}}$
$A_{f}=$ surface area of the fin $=P . L$
$A_{b}=$ base area of the fin $=A$

Corrected Length (Lc)

Lc is used in all equations that apply for the case of the fin with an insulated tip (case 2).

$$
\begin{aligned}
& L c=L+\frac{t}{2} \quad \text { (For general) } \\
& A m=L . t
\end{aligned}
$$

Example: The outer surface of an oil heater at a uniform temperature of $150^{\circ} \mathrm{C}$ is to be filled with straight rectangular fins having a uniform thermal conductivity of $25 \mathrm{~W} / \mathrm{m} . \mathrm{K}$. The ambient air temperature is $20^{\circ} \mathrm{C}$ and the heat transfer coefficient is $570 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}$. Determine the thickness and fin efficiency if the length of each fin is 10 mm and each to remove 900 W per meter length of primary surface.

Solution.

$T_{0}=150^{\circ} \mathrm{C}, k=25 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, h=570 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}, L=10 \mathrm{~mm}, T_{\infty}=20^{\circ} \mathrm{C}$
$\mathrm{q}=\sqrt{\mathrm{hPkA}} \theta_{0} \tanh m L c$
$P=2(w+t)=2(t+1), \quad A=w t, w=1$
$m=\sqrt{\frac{h P}{k A}}=\sqrt{\frac{570 \times 2(t+1)}{25 \times t}}=6.75 \sqrt{\frac{t+1}{t}}$
$q=\sqrt{570 \times 2(t+1) \times 25 \times t}(150-20) \tanh \left(0.0675 \sqrt{\frac{t+1}{t}}\right)$
$900=21964.5 \sqrt{t^{2}+t} \tanh \left(0.0675 \sqrt{\frac{t+1}{t}}\right)$
by trial and error $\Rightarrow t \cong 2.07 \mathrm{~mm}$
$\eta_{f}=\frac{\tanh m L c}{m L c}=60.7 \%$

Example 2: A very long 1 cm diameter copper rod ($k=377 \mathrm{~W} / \mathrm{m} . \mathrm{K}$) is exposed to an environment at $22^{\circ} \mathrm{C}$. The base temperature is maintained at $150^{\circ} \mathrm{C}$ and the heat transfer coefficient between the rod and surrounding air is $11 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}$. Determine the heat transfer rate from the rod to the surrounding air.

Solution.

$$
\begin{aligned}
q & =\sqrt{h P k A} \theta_{0} \\
q & =\sqrt{h(\pi D) \times k \times \pi D^{2} / 4}\left(T_{0}-T_{\infty}\right) \\
q & =12.95 W
\end{aligned}
$$

Example 3: Repeat example 2 for finite length of $2,4,8, \ldots .128 \mathrm{~cm}$, a surrounding heat loss at the end (case 3).

Solution.

For case 3

$$
\begin{aligned}
& q=\sqrt{h P k A} \theta_{0} \frac{\sinh m L+(h / m k) \cosh m L}{\cosh m L+(h / m k) \sinh m L} \\
& m=\sqrt{\frac{h P}{k A}}=\sqrt{\frac{h(\pi D)}{k\left(\frac{\pi D^{2}}{4}\right)}}=\sqrt{\frac{4 h}{k D}}=3.416
\end{aligned}
$$

At $L=2 c m, m L=0.06832, \sinh m L=0.06837, \cosh m L=1.00233 \Rightarrow q=0.993 \mathrm{~W}$

