8. THE IDEAL-GAS EQUATION OF STATE

A gas is made of molecules that move around with random motion. In a perfect gas, the molecules may collide but they have no tendency to stick together or repel each other. In reality, there is a slight force of attraction between gas molecules but this is so small that gas laws formulated for an ideal gas work quite well for a real gas.

Any equation that relates the pressure, temperature, and specific volume of a substance is called an equation of state. Property relations that involve other properties of a substance at equilibrium states are also referred to as equations of state. There are several equations of state, some simple and others very complex. The simplest and best-known equation of state for substances in the gas phase is the ideal-gas equation of state. This equation predicts the (P-v-T) behavior of a gas quite accurately within some properly selected region.

Gas and vapor are often used as synonymous words. The vapor phase of a substance is customarily called a gas when it is above the critical temperature. Vapor usually implies a gas that is not far from a state of condensation. In 1662, Robert Boyle, an Englishman, observed during his experiments with a vacuum chamber that the pressure of gases is inversely proportional to their volume. In 1802, J. Charles and J. Gay-Lussac, Frenchmen, experimentally determined that at low pressures the volume of a gas is proportional to its temperature. That is,

$$
\begin{align*}
& P V=\mathrm{mRT} \tag{18}\\
& P \mathrm{~V}=\mathrm{RT} \tag{19}
\end{align*}
$$

where
R : is called the gas constant and it is different for each gas. Table (1) shows the values of the gas constant for different gases.

P : is the absolute pressure.
T : is the absolute temperature (K).
V : is the volume $\left(\mathrm{m}^{3}\right)$
v : is the specific volume $\left(m^{3} / \mathrm{kg}\right)$.

Equations (18 and 19) is called the ideal-gas equation of state, or simply the ideal-gas relation, and a gas that obeys this relation is called an ideal gas.

$$
\begin{equation*}
R=\frac{R_{u}}{M} \quad \text { and } \quad M=\frac{m}{N} \tag{20}
\end{equation*}
$$

where R_{u} : is the universal gas constant.
M : is the molar mass (also called molecular weight) of the gas.
The constant $\left(R_{u}\right)$ is the same for all substances, and its value is

$$
\begin{gathered}
R_{u}=8.314 \mathrm{~kJ} / \mathrm{kmol} . \mathrm{K} \\
R_{u}=1545.37 \mathrm{ft} . \mathrm{lbf} / \mathrm{kmol} . \mathrm{R}
\end{gathered}
$$

Boyle's law states that the pressure of a given mass of an ideal gas is inversely proportional to its volume at a constant temperature. It is expressed as:

$$
\begin{equation*}
P V=C \quad \text { or } \quad P_{1} V_{1}=P_{2} V_{2} \Rightarrow \frac{P_{1}}{P_{2}}=\frac{V_{2}}{V_{1}} \tag{21}
\end{equation*}
$$

Charles's law states that the volume of an ideal gas at constant pressure is directly proportional to the absolute temperature. It is expressed as:

$$
\begin{equation*}
\frac{V}{T}=C \quad \text { or } \quad \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \tag{22}
\end{equation*}
$$

Gay-Lussac's law states that, for a given mass and constant volume of an ideal gas, the pressure exerted on the sides of its container is directly proportional to its absolute temperature. It is expressed as:

$$
\begin{equation*}
\frac{P}{T}=C \quad \text { or } \quad \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}} \tag{23}
\end{equation*}
$$

Example (4): Determine the mass of the air in a room whose dimensions are ($4 \mathrm{~m} \times 5$ $\mathrm{m} \times 6 \mathrm{~m})$ at $(100 \mathrm{kPa})$ and $\left(25^{\circ} \mathrm{C}\right)$.

Solution:

From Table (1), the gas constant of air is
$R=0.287 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$
$T=25+273=298 K$
$V=4 * 5 * 6=120 \mathrm{~m}^{3}$

$P V=m R T \Rightarrow m=\frac{P V}{R T}$
$m=\frac{P V}{R T}=\frac{100 * 120}{0.287 * 298}=140.3 \mathrm{~kg}$
Example (5): An amount of gas has a pressure of (350 kPa), a volume of $\left(0.03 \mathrm{~m}^{3}\right)$ and a temperature of $\left(35^{\circ} \mathrm{C}\right)$. If ($\mathrm{R}=0.29 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$), calculate the mass of the gas and the final temperature if the final pressure is $(1.05 \mathrm{MPa})$ and the volume remains constant.

Solution:

The absolute temperature: $T_{1}=35+273=308 \mathrm{~K}$
$P_{1} V_{1}=m R T_{1}$
$m=\frac{350 \times 0.03}{0.29 \times 308} \Rightarrow m=0.12 \mathrm{~kg}$
Applying the equation of state between two conditions at constant volume:
$\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$
$\frac{350}{308}=\frac{1.05 \times 10^{3}}{T_{2}} \Rightarrow T_{2}=\frac{1.05 \times 10^{3} * 308}{350}$
$T_{2}=924 \mathrm{~K}$

Class: First Stage
Subject: Thermodynamics
Lecturer: Dr. Athraa Al-Abbasi
E-mail: Dr.AthraaHameed@mustaqbalcollege.edu.iq

Example (6): A tank has a volume of ($0.5 \mathrm{~m}^{3}$) and contains (10 kg) of an ideal gas having a molecular weight of (24). The temperature is $\left(25^{\circ} \mathrm{C}\right)$. What is the pressure of the gas?

Solution:

The absolute temperature: $T=25+273=298 \mathrm{~K}$
$R=\frac{R_{u}}{M}=\frac{8.314}{24}=0.35 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
$P V=m R T$
$P \times 0.5=10 \times 0.35 \times 298$
$P=\frac{10 \times 0.35 \times 298}{0.5}$
$P=2086 \mathrm{kPa}$

Home Work (1):

1- A container of $\left(0.2 \mathrm{~m}^{3}\right)$ contains nitrogen at a pressure of (1.013 bar) and at a temperature of $\left(15{ }^{\circ} \mathrm{C}\right) .(2 \mathrm{~kg})$ of nitrogen was pumped by a special pump to the tank. Calculate the new gas pressure when the tank returns to its initial temperature. Nitrogen was considered an ideal gas, take $\mathrm{R}=296.9 \mathrm{~J} / \mathrm{kg}$. K.

Ans. (1.87 bar)
2- Air in an internal combustion engine has $\left(227^{\circ} \mathrm{C}\right),(1000 \mathrm{kPa})$ with a volume of $\left(0.1 \mathrm{~m}^{3}\right)$. Now combustion heats it to $(1500 \mathrm{~K})$ in a constant volume process. What is the mass of air and how high does the pressure become?

Ans. ($0.697 \mathrm{~kg}, 3000 \mathrm{kPa}$)
3- A rigid tank of 1 m 3 contains nitrogen gas (molecular weight 28) at $600 \mathrm{kPa}, 400$ K . By mistake someone lets 0.5 kg flow out. If the final temperature is 375 K what is the final pressure?

Ans. (506.9 kPa)
4- A ($1 \mathrm{~m}^{3}$) rigid tank contains propane (molecular weight 44) at (100 kPa), (300 K) and connected by a valve to another tank of $\left(0.5 \mathrm{~m}^{3}\right)$ with propane at (250 kPa), $(400 \mathrm{~K})$. The valve is opened and the two tanks come to a uniform state at (325 K). What is the final pressure?

Ans. (139.9 kPa)
5- (0.1) kg of ideal gas occupies a volume of $\left(0.003 \mathrm{~m}^{3}\right)$ at a pressure of (7 bar) and a temperature ($131{ }^{\circ} \mathrm{C}$) when the gas was expand to a pressure of (1 bar), its final volume became $\left(0.02 \mathrm{~m}^{3}\right)$. Calculate the final temperature.

Ans. (384.6 K)
6- Air is at $\left(25^{\circ} \mathrm{C}\right)$ and (101.325 kPa). If the gas constant $(\mathrm{R}=287 \mathrm{~J} / \mathrm{kg} . \mathrm{k})$, find the specific volume and the molar mass of this gas, assuming it behaves as an ideal gas.

Ans. ($0.8445 \mathrm{~m}^{3} / \mathrm{kg}, 28.97 \mathrm{~kg} / \mathrm{kmol}$)

Class: First Stage
Subject: Thermodynamics
Lecturer: Dr. Athraa AI-Abbasi
E-mail: Dr.AthraaHameed@mustaqbal-
college.edu.iq

Table (1) Ideal-gas specific heats of various common gases at (300 K)

Gas	Formula	Gas constant R kJ/(kg. K	c_{p} $k J /(k g . K)$	c_{v} $k J /(k g . K)$	γ
Air	-	0.2870	1.005	0.718	1.400
Argon	Ar	0.2081	0.5203	0.3122	1.667
Butane	$\mathrm{C}_{4} \mathrm{H}_{10}$	0.1433	1.7164	1.5734	1.091
Carbon dioxide	CO_{2}	0.1889	0.846	0.657	1.289
Carbon monoxide	CO_{2}	0.2968	1.040	0.744	1.400
Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	0.2765	1.7662	1.4897	1.186
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}$	0.2964	1.5482	1.2518	1.237
Helium	He_{2}	2.0769	5.1926	3.1156	1.667
Hydrogen	H_{2}	4.1240	14.307	10.183	1.405
Methane	CH_{4}	0.5182	2.2537	1.7354	1.299
Neon	Ne_{2}	0.4119	1.0299	0.6179	1.667
Nitrogen	N_{2}	0.2968	1.039	0.743	1.400
Octane	$\mathrm{C}_{8} \mathrm{H}_{18}$	0.0729	1.7113	1.6385	1.044
Oxygen	O_{2}	0.2598	0.918	0.658	1.395
Propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	0.1885	1.6794	1.4909	1.126
Steam	$\mathrm{H}_{2} \mathrm{O}$	0.4615	1.8723	1.4108	1.327

