Lecture No. 6

"Nodal Analysis"

Nodal method :

In this method, every junction in the network where three or more branches meet is regarded as a node. One of these is regarded as the reference node (or zero potential node) .
Consider the circuit in fig. 1 which has three nodes. Node 3 has been taken as the reference node. V_{A} represent the potential of node 1 with respect to node $3 . V_{B}$ represent the potential of node 2 with respect to node 3 .

Fig. 1
Node 1 :

Node 2 :

Example : Using nodal method, find all currents for the circuit shown in fig. 2 .

Fig. 2

Consider node 3 as reference node .

Node 1 :

$4 V_{1}-2 V_{2}=15-----(1)$
Node 2 :

$3.5 \mathrm{~V}_{2}-2 \mathrm{~V}_{1}=20$--------(2)
 college.edu.iq

From Equations (1) and (2)

$$
\mathrm{V}_{1}=9.25 \mathrm{v} \quad, \quad \mathrm{~V}_{2}=11 \mathrm{v}
$$

$$
15-9.25
$$

$$
\mathbf{I}_{1}=----------------=5.75
$$

$$
I_{3}=\frac{20-11}{1}-------=9 \mathrm{~A}
$$

$$
\mathrm{I}_{4}=5.75+3.5=9.25 \mathrm{~A}
$$

$$
I_{5}=9-3.5=5.5 \mathrm{~A}
$$

$$
\begin{aligned}
& \text { 11-9.25 } \\
& I_{2}=--------------=3.5 \mathrm{~A} \\
& 0.5
\end{aligned}
$$

