aruidenbiabr

2

(u) Trigonometric Functions.

If u is any bifinul viz-alosi
differentiable
function of \underline{x}, then
(1) $\frac{d}{d x} \sin u=\cos u \cdot \frac{d u}{d x}$
(2) $\frac{d}{d x} \cos u=-\sin \cdot \frac{d u}{d x}$
(3) $\frac{d}{d x} \tan u=\sec ^{2} u \cdot \frac{d u}{d x}$
(4) $\frac{d}{d x} \cot u=\csc ^{2} u \cdot \frac{d u}{d x}$
(5) $\frac{d}{d x} \sec u=\sec u \cdot \tan u \cdot \frac{d u}{d y}$
(6) $\frac{d}{d x} \csc u=-\csc u \cdot \cot u \cdot \frac{d u}{d x}$

Ex) Find $\frac{d y}{d x}$ for the followings functions:-
(1) $y=\tan \left(3 x^{2}\right)$

Ans

$$
\begin{aligned}
& \frac{d y}{d x}=\sec ^{2}\left(3 x^{2}\right) \cdot \frac{6 x}{\left(3 x^{2}\right)} \\
& \frac{d y}{d x}=6 x \cdot \sec ^{2}\left(3 x^{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& \text { (2) } \begin{aligned}
y & =(\csc x+\cot x)^{2} \\
\frac{d y}{d x} & =2(\csc x+\cot x)\left(-\csc x \cdot \cot x-\csc ^{2} x\right) \\
& =-2 \csc x \cdot(\csc x+\cot x)^{2}
\end{aligned} \text { }
\end{align*}
$$

$$
\begin{aligned}
& \text { (3) } y=2 \sin \frac{x}{2}-x \cos \frac{x}{2} \\
& \frac{d y}{d x}=\left(2 \cos \frac{x}{2}\right) * \frac{1}{2}-\left[x \cdot\left(-\sin \frac{x}{2} \cdot \frac{1}{2}\right)+\left(\cos \frac{x}{2} \cdot 1\right)\right] \\
& \frac{d y}{d x}=\frac{x}{2} \cdot \sin \frac{x}{2} \\
& \text { (4) } y=\tan ^{2}(\cos x) \\
& \frac{d y}{d x}=2\left(\tan ^{2}(\cos x) \cdot \sec ^{2}(\cos x) \cdot(-\sin x)\right. \\
& \frac{d y}{d x}=+2 \cdot \sin x \cdot \tan (\cos x) \cdot \sec ^{2}(\cos x)
\end{aligned}
$$

(3)
(5) $x+\tan (x y)=0$

Ans

$$
\begin{aligned}
& 1+\sec ^{2}(x y) \cdot\left(x \cdot \frac{d y}{d x}+y\right)=0 \\
& 1+x \sec ^{2}(x y) \frac{\partial y}{d x}+y \sec ^{2}(x y)=0 \\
& 1+y \sec ^{2}(x y)=-x \sec ^{2}(x y) \frac{d y}{\partial x} \\
& \frac{d y}{\partial x}=\frac{-1+y \sec ^{2}(x y)}{x \sec ^{2}(x y)}
\end{aligned}
$$

$$
\begin{align*}
& \text { (6) } y=\sec ^{4} x-\tan ^{4} x \\
& \frac{d y}{d x}=4 \sec ^{3} x \cdot \sec x \cdot \tan x-4 \tan ^{3} x \cdot \sec ^{2} x \\
& =4 \tan x \sec ^{2} x\left(\sec ^{2} x-\tan ^{2} x\right) \\
& \frac{d y}{d x}=4 \tan x \sec ^{2} x \tag{4}
\end{align*}
$$

EX) Prove that:

$$
\begin{aligned}
& \frac{d}{d x} \tan u=\sec ^{2} u \cdot \frac{d u}{d x} \\
& \text { L.H.S }=\frac{d}{d x} \tan u=\frac{d}{d x} \frac{\sin u}{\cos u} \\
& =\frac{\cos u \cdot \cos u \cdot \frac{d u}{d x}-\sin u(-\sin u) \frac{d u}{d x}}{\cos ^{2} u} \\
& =\frac{\cos ^{2} u \frac{d u}{d x}+\sin ^{2} u^{d} \frac{d u}{d x}}{\cos ^{2} u} \\
& \operatorname{sos}^{2} u+\sin ^{2} u=1 \\
& =\frac{\left(\cos ^{2} u+\sin ^{2} u\right) \frac{d u}{d x}}{\cos ^{2} u} \\
& =\frac{1}{\cos ^{2} u} \cdot \frac{\partial u}{\partial x}=\sec ^{2} u \cdot \frac{\partial u}{\partial x}=R \cdot H \cdot S
\end{aligned}
$$

EX) Prove that:

$$
\begin{aligned}
& \frac{d}{\partial x} \sec u=\sec u \cdot \tan x \frac{\partial u}{\partial x} \\
& \frac{\text { L.H.S }}{\frac{d}{d x}} \frac{\partial}{d x} \sec u=\frac{d}{d x} \frac{1}{\cos u} \cos ^{2} u-1 x-\sin u \frac{d u}{d x} \\
& \frac{d}{d x} \frac{\sin ^{2} u}{\cos ^{2} u} \cdot \frac{\partial u}{d x} \\
& \frac{1}{\cos u} \cdot \frac{\sin u}{\cos u} \cdot \frac{d u}{d x} \\
& =\sec u \cdot \tan u \cdot \frac{d u}{d x}=R . H . S
\end{aligned}
$$

$e x)$ Find $\frac{d y}{d x}$ For the function?

$$
y=\sin ^{3} 2 x
$$

$$
\begin{aligned}
& \frac{d y}{d x}=6 \sin ^{2} 2 x \cdot \cos 2 x \\
& \text { 越 } \\
& \text { sin. }
\end{aligned}
$$

ex) find $\frac{\partial y}{\partial x}$ For the

$$
\begin{aligned}
& y=\sqrt{x \tan x} \\
& y=(x \tan x)^{\frac{1}{2}}
\end{aligned}
$$

Ans

$$
\begin{aligned}
& \frac{\partial y}{\partial x}=\frac{1}{2}\left(\frac{x \tan x}{-\frac{1}{2}}\right)^{-1, \tan } \cdot\left(x \cdot \sec ^{2} x+\tan x \cdot 1\right) \\
& \frac{\partial y}{\partial x}=\frac{1}{2}(x \tan x)^{-\frac{1}{2}} \cdot\left(x \cdot \sec ^{2} x+\tan x\right)
\end{aligned}
$$

(7)
on ios
Q) Find the $\frac{d y}{d x}$ for the Homework

$$
y=\cos 2 x^{2}
$$

Q_{2}, Prove that

$$
\frac{d}{d x} \sec (x)=\sec x \cdot \tan x
$$

