

اسم التدريسي :م.م. ميس خالد محمد

اسم المادة : الميكانيك

عنوان المحاضرة: Center of mass and centroid

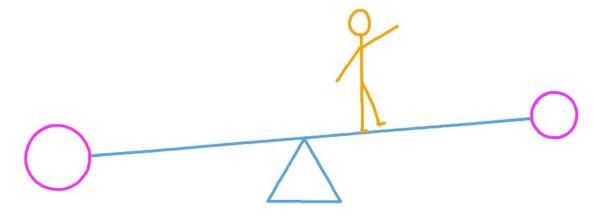
رقم المحاضرة: 11

الايميل الجامعي للتدريسي: mays.khalid@mustaqbal-college.edu.iq

Center of mass and centroid

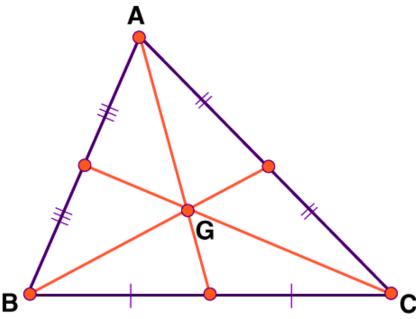
What is the center of mass?

• The *center of mass* is a position defined relative to an object or system of objects. It is the average position of all the parts of the system, weighted according to their masses.



What is centroid?

• The centroid or geometric center of a plane figure is the arithmetic mean position of all the points in the figure. Informally, it is the point at which a cutout of the shape could be perfectly balanced on the tip of a pin.

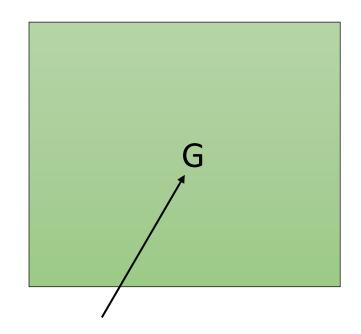


• The center of mass equal to centroid if the body is homogeneous.

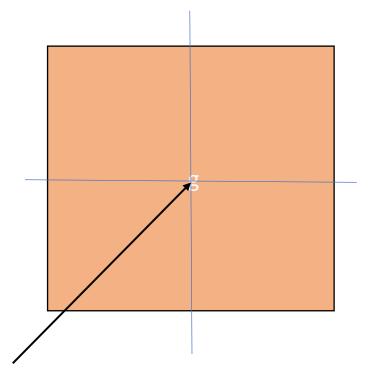
• A body is said to be homogeneous if all the material points are materially uniform with respect to a single placement. A body that is not homogeneous is said to be inhomogeneous

Examples

Center of mass (homogeneous)



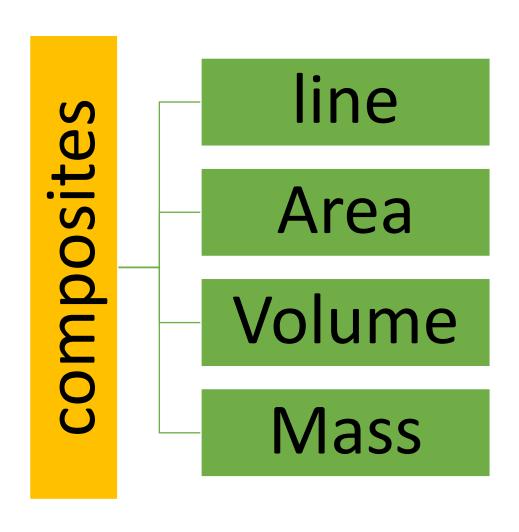
centroid (homogeneous)



Composites

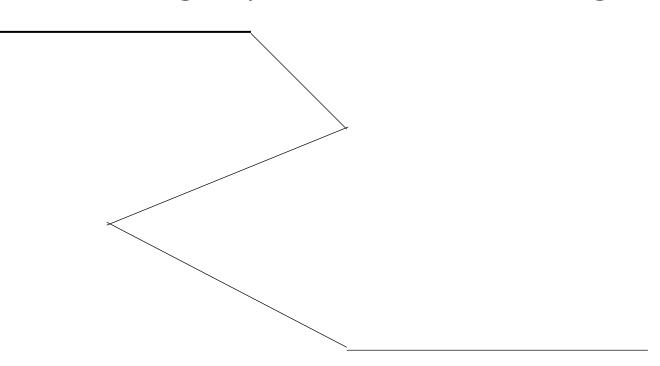
•Often ,many bodies with complex geometries can be broken into simple shapes , of which the centroid are easy to locate.

• Composites bodies can be divided into four types:



1- composite line

• Composite line contains group of lines connected together

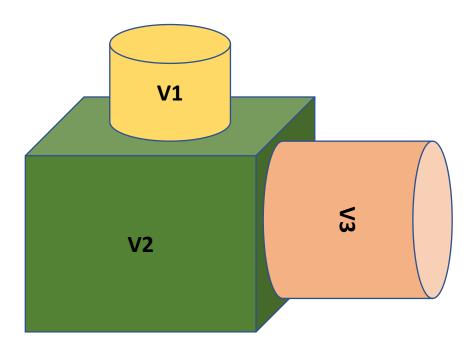


2- composite area

Contains group of different shapes with different areas

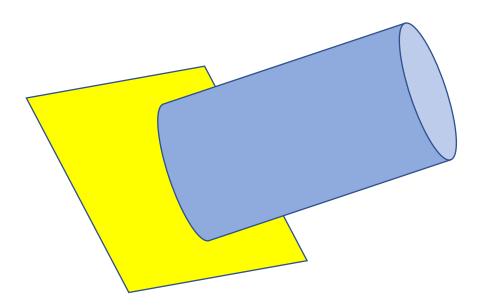
3- Composite volume

Contains different shapes with different volumes



4- Composite mass

• Contains a mix of areas, lines, volumes



Shape	Drawing	\overline{x}	<u>y</u>	Area
Rectangle		b/2	h/2	bh
Triangle	T X X X X X X X X X X X X X X X X X X X	b/3	h/3	bh/2
Semicircle	X	0	4r/3π	πr ² /2

Quarter Circle	Y X X	4r/3π	$4r/3\pi$	$\pi r^2/4$
Parabolic Segment	TANGENT TO HOPIZONTAL X X	5b/8	2h/5	2bh/3
Complement of a Parabolic Segment	TANGENT	3b/4	3h/10	bh/3

CENTROID LOCATIONS FOR A FEW COMMON VOLUMES

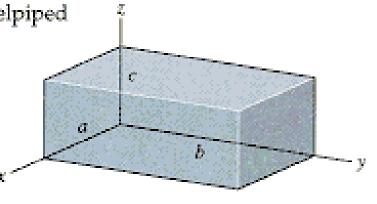
Rectangular parallelpiped

$$V = abc$$

$$x_{\mathbb{C}} = \frac{a}{2}$$

$$y_C = \frac{b}{2}$$

$$z_C = \frac{c}{2}$$



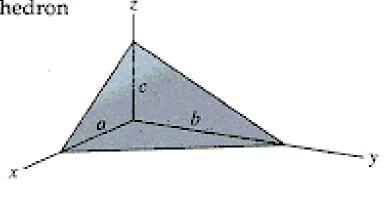
Rectangular tetrahedron

$$V = \frac{abc}{6}$$

$$x_C = \frac{a}{4}$$

$$y_C = \frac{b}{4}$$

$$z_C = \frac{c}{4}$$



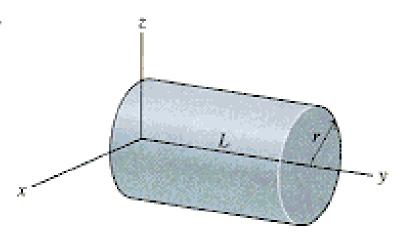
Circular cylinder

$$V = \pi r^2 L$$

$$x_C = 0$$

$$y_C = \frac{L}{2}$$

$$z_{\mathbb{C}} = 0$$



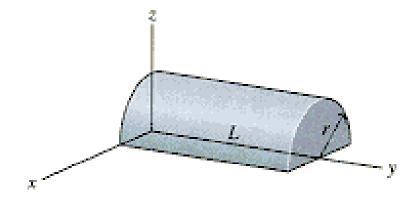
Semicylinder

$$V = \frac{\pi r^2 L}{2}$$

$$x_C = 0$$

$$y_C = \frac{L}{2}$$

$$z_C = \frac{4r}{3\pi}$$



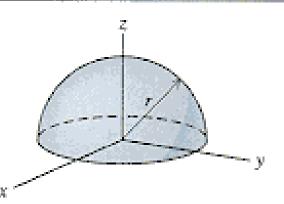
Hemisphere

$$V = \frac{2\pi r^3}{3}$$

$$x_C=0$$

$$y_C = 0$$

$$z_C = \frac{3r}{8}$$



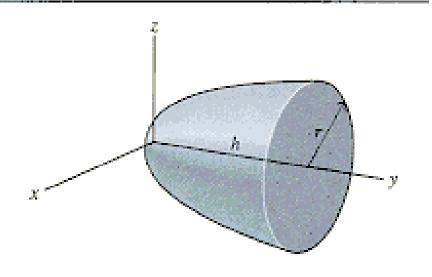
Paraboloid

$$V = \frac{\pi r^2 l}{2}$$

$$x_C = 0$$

$$y_C = \frac{2k}{3}$$

$$z_C = 0$$



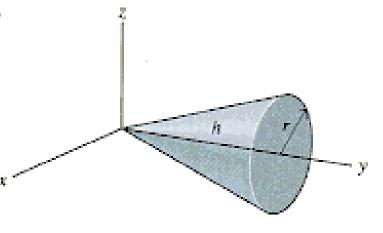
Right circular cone

$$V = \frac{\pi r^2 h}{3}$$

$$x_{\rm C}=0$$

$$y_C = \frac{3h}{4}$$

$$z_C=0$$



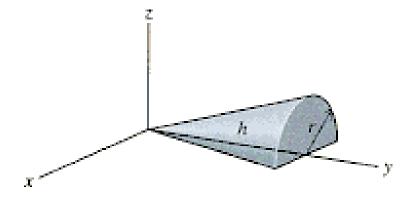
Half cone

$$V = \frac{\pi r^2 l}{6}$$

$$x_{\rm C}=0$$

$$y_C = \frac{3h}{4}$$

$$z_C = \frac{1}{2}$$



How to solve centroid questions?

- First, we will create a table to fill it with the suitable information.
- for example, if we have a composite line system with four lines. Then, the table will be:

	X	Y	Z	L	X*L	Y*L	Z*L
1							
2							
3							
4							
				ΣL	ΣΧL	ΣYL	

• if we have a composite area system with four shapes. Then, the table will be :

	X	Υ	Z	Α	X*A	Y*A	Z*A
1							
2							
3							
4							
				ΣΑ	ΣΧΑ	ΣΥΑ	

if we have a composite volume system with four shapes. Then, the table will be:

	Х	Υ	Z	V	X*V	Y*V	Z*V
1							
2							
3							
4							
				ΣV	ΣΧV	ΣΥV	

if we have a composite mass system with four shapes. Then, the table will be:

	X	Υ	Z	m	X*m	Y*m	Z*m
1							
2							
3							
4							
				Σm	ΣXm	ΣYm	

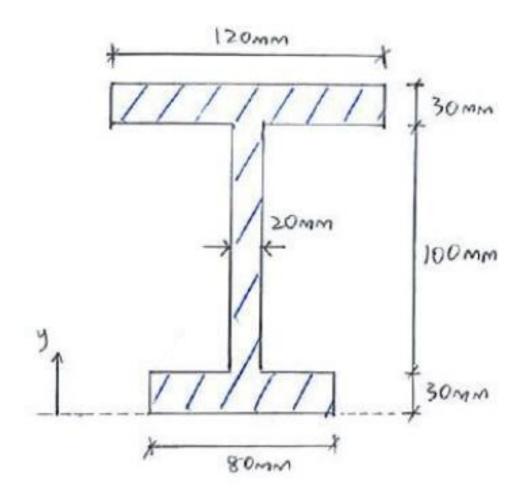
The final formula for the centroid

•
$$\chi = \frac{\Sigma(XL, XA, XV, XM)}{\Sigma(L, A, V, M)}$$

•
$$Y = \frac{\Sigma(YL, YA, YV, YM)}{\Sigma(L, A, V, M)}$$

•
$$Z = \frac{\Sigma(ZL,ZA,ZV,ZM)}{\Sigma(L,A,V,M)}$$

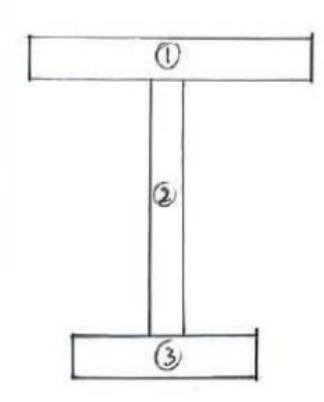
Question 1



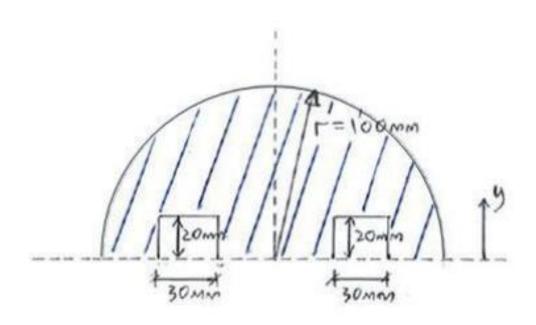
Find the centroid $\bar{\mathbf{y}}$ of the unsymmetrical I-section with respect to its base.

SHAPE	A'(mm2)	y' (MM)	A'y' (mm3)
(i) —	120×30 = 3,600	$130 + \frac{30}{2} = 145$	522,000
(3) []	20×100 = 2,000	$30 + \frac{100}{2} = 80$	160,000
3 🗀	80×30 =2,400	30 = 15	36,000
-	EA'= 8,000 mm	, ,	EA'y'= 718,000mm3

$$\bar{y} = \frac{\sum A'\bar{y}'}{\sum A'} = \frac{718,000 \text{ mm}^3}{8,0000 \text{ mm}^2} = 89.75 \text{ mm}.11$$



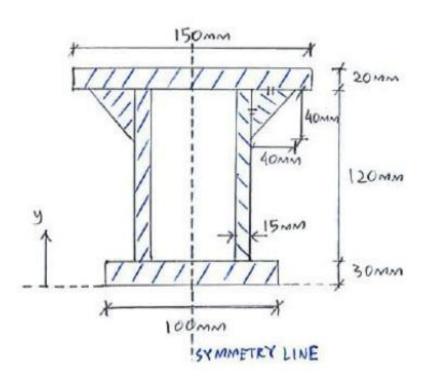
Question 2



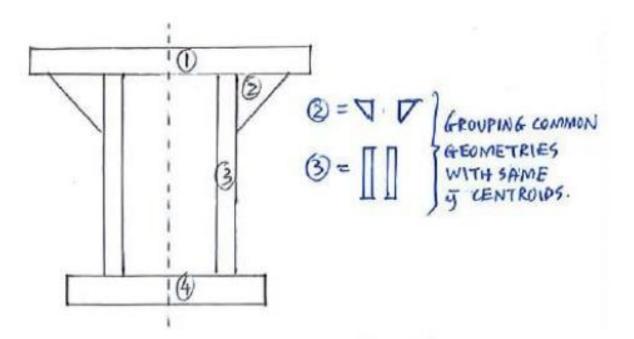
Calculate the centroid $\bar{\mathbf{y}}$ of the geometry with respect to its base.

SHAPE	A (com)	1 4'(mm)	A'y'(~~3)
0	7(100)2 = 15,707.96	4+ = 4(100) = 42.44	666,666.67
② 12	-30×20 = -600	20 = 10	-6,000
(3) Ø	-30×20 = -600	20 = 10	-6,000
-	EA'= 14,507.96,	**************************************	EA'g'=654,666.67mm3

Question 3



Calculate the centroid $\bar{\mathbf{y}}$ of the geometry with respect to its base.



	$0+\frac{20}{2}=160$ 480,000 $0-\frac{40}{2}=136.67$ 218,666-67
2)=1,600 30+12	0-40=136.67 218,666-67
0)=3,600 30+	120 = 90 324,000
= 3,000	30 = 15 45,000