Problem 4

Determine the resultant R of the two forces shown by summing scalar components.

Solution

$$
\begin{aligned}
& R_{x}=\sum F_{x}=600 \cos 60^{\circ}-400=-100 \mathrm{~N} \\
& R_{y}=\sum F_{y}=600 \sin 60^{\circ}+0=520 \mathrm{~N}
\end{aligned}
$$

Law of cosines:
$R^{2}=600^{2}+400^{2}-2(600)(400) \cos 60^{\circ}$
$R=529 \mathrm{~N}$

Problem 5

To satisfy design limitations it is necessary to deter mine the effect of the $2-\mathrm{kN}$ tension in the cable on the shear, tension, and bending of the fixed I-beam. For this purpose replace this force by its equivalent of two forces at $A, \mathrm{~F}_{\mathrm{t}}$ parallel and F_{n} perpendicular to the beam. Determine F_{t} and F_{n}.

Solution

$$
\begin{aligned}
& F_{t}=2 \cos 50^{\circ}=1.286 \mathrm{kN} \\
& F_{n}=2 \sin 50^{\circ}=1.532 \mathrm{kN}
\end{aligned}
$$

Problem 6

In the design of a control mechanism, it is determined that rod AB transmits a $260-\mathrm{N}$ force P to the crank BC. Determine the x and y scalar components of P .

Solution

$$
\begin{aligned}
& P_{x}=-260\left(\frac{12}{13}\right)=-240 \mathrm{~N} \\
& P_{y}=-260\left(\frac{5}{13}\right)=-100 \mathrm{~N}
\end{aligned}
$$

Problem 7

The ratio of the lift force L to the drag force D for the simple airfoil is $\mathrm{L} / \mathrm{D}=10$. If the lift force on a short sect ion of the airfoil is 50 lb , compute the magnitude of the resultant force R and the angle $\boldsymbol{\theta}$ which it makes with the horizontal.

Solution

$$
\begin{aligned}
\frac{L}{D}= & \frac{50}{D}=10 ; D=5 \mathrm{lb} \\
R & =\sqrt{L^{2}+D^{2}}=\sqrt{50^{2}+5^{2}} \\
& =50.2 \mathrm{lb} \\
\theta & =\tan ^{-1}\left(\frac{L}{D}\right)=\tan ^{-1}\left(\frac{50}{5}\right) \\
& =84.3^{\circ}
\end{aligned}
$$

