## Heisler Charts

A group of curves are used with unsteady-state case when Biot no. is greater than 0.1. The most cases that to be treated are

1- Infinite plate (plate where thickness is very small in comparison to other dimension).
2- Infinite cylinder (where the diameter is very small compared to length)
3- Sphere.

Figure 4-6 I Nomenclature for one-dimensional solids suddenly subjected to convection environment at $T_{\infty}:(a)$ infinite plate of thickness $2 L ;(b)$ infinite cylinder of radius $r_{0} ;(c)$ sphere of radius $r_{0}$.


The results of analysis for these geometries have been presented in graphical by Heister Charts (Figures $4.9-4.18$ ).In these figures,
$T \infty=$ Environment temperature.
$\mathrm{Ti}=$ Initial temperature of the solid $(\mathrm{t}=0)$.
$\theta=T(x, t)-T_{\infty} \quad$ or $\quad T(r, t)-T_{\infty}$
$\theta_{i}=T_{i}-T_{\infty}$
$\theta_{0}=T_{0}-T_{\infty}$
If a centerline temperature is desired, only one chart is required to obtain a value for $\theta_{0}$ and then $T_{0}$, i.e Figure 4.9 for infinite plate, Figure 4.10 for infinite cylinder and Figure 4.11 for sphere.
For off-center temperature, two charts are required to calculate the proc $\frac{\theta}{\theta_{i}}=\frac{\theta_{0}}{\theta_{i}} \frac{\theta}{\theta_{0}}$
i.e Figure 4.9 and Figure 4.12 for infinite plate, Figure 4.10 and Figure 4.13 for infinite cylinder and Figure 4.11 and Figure 4.14 for sphere.

The heat losses for the infinite plate, infinite cylinder, and sphere are given in Figures 4-16, 4.17 and 4.18, respectively, where $Q_{0}$ represents the initial internal energy content of the body in reference to the environment temperature, which is

$$
Q_{0}=\rho c V\left(T_{i}-T_{\infty}\right)=\rho c V \theta_{i}
$$

In these figures $Q$ is the actual heat lost by the body in time $t$.

## The Biot and Fourier Numbers

The temperature profiles and heat flows may all be expressed in terms of two dimensionless parameters called the Biot and Fourier numbers:

$$
\begin{aligned}
& \text { Biot Number }(\text { Bi })=\frac{h s}{k}, \quad s=V / A \\
& \text { Fourier number }(\mathrm{Fo})=\frac{\alpha t}{s^{2}}=\frac{k t}{\rho c p s^{2}}
\end{aligned}
$$

All value of the Bi no. means that internal-conduction resistance is negligible in comparison with surface-convection resistance.

All value of Fo no. means that along period of time is required to heat or cool the body.

## Applicability of the Heisler Charts

The Heisler charts is applicable in the case of Fo no. is greater than 0.2.

$$
\left.(\mathrm{Fo})=\frac{\alpha t}{s^{2}}\right\rangle 0.2
$$

Example: A steel plate ( $\mathrm{k}=41 \mathrm{~W} / \mathrm{m} . \mathrm{K}, 5 \mathrm{~cm}$ thick) is initially at a temperature of $425^{\circ} \mathrm{C}$. its suddenly exposed on path side to a convention environment with $h=285 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}$ and $T \infty=$ $65^{\circ} \mathrm{C}$. Determine the centre line temperature and the temperature inside the body 1.25 cm from the surface after $24 \mathrm{~min} . \alpha=1.172 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$

## Solution

$2 L=5 \Rightarrow L=2.5 \mathrm{~cm}, \quad t=24 \times 60=1440 \mathrm{sec}$
$\frac{\alpha t}{L^{2}}=25.7$
$\frac{k}{h L}=5.75$
From figure $4.9 \frac{\theta_{0}}{\theta_{i}}=0.015 \Rightarrow T_{0}=65+0.015(425-65)=70.4^{\circ} \mathrm{C}$ (Centre temperature)
From figure 4.12, at $x / L=0.5, \frac{\theta}{\theta_{0}}=0.98$
$\therefore T=65+0.98(70.4-65)=70.3^{\circ} \mathrm{C}$

Example: Along 6.5 cm diameter solid cylinder steel $\left(\mathrm{k}=16.3 \mathrm{~W} / \mathrm{m} . \mathrm{K}, \rho=7817 \mathrm{~kg} / \mathrm{m}^{3}\right.$, $\mathrm{cp}=460$ $\mathrm{J} / \mathrm{kg} . \mathrm{K}$ ). It's initially a uniform temperature $T i=150^{\circ} \mathrm{C}$. It's suddenly exposed to a convective environment at $T \infty=50^{\circ} \mathrm{C}$ and $h=285 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}$. Calculate the temperature at 1) the axis of cylinder, and 2) a 2.5 cm radial distance after 5 min of exposure to the cooling flow 3) determine the total energy transferred from the cylinder per meter length during the first five min . of cooling.

## Solution

$D=6.5, r_{0}=3.25 \mathrm{~cm}, \quad t=5 \times 60=300 \mathrm{sec}$
$\alpha=\frac{k}{\rho c p}=0.4444 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
$\frac{k}{h r_{0}}=1.76$
$\frac{\alpha t}{r_{0}^{2}}=1.26$
From figure $4.10 \frac{\theta_{0}}{\theta_{i}}=0.35 \Rightarrow$

1) $T_{0}=50+0.35(150-50)=85^{\circ} \mathrm{C}$
2) From figure 4.13, at $r / r_{0}=0.77, \frac{\theta}{\theta_{0}}=0.86 \Rightarrow T=50+0.86(85-50)=80^{\circ} \mathrm{C}$
3) From figure 4.17, $\frac{h r_{0}}{k}=0.57, \frac{h^{2} \alpha t}{k^{2}}=0.407 \Rightarrow \frac{Q}{Q_{0}}=0.69$
$Q_{0}=\rho V c p\left(T_{i}-T_{\infty}\right), \quad V=\pi r_{0} L$
$\frac{Q_{0}}{L}=1193000 \mathrm{~J} / \mathrm{m}$
$\therefore Q=0.69 \times 1193000=823.170 \mathrm{~kJ} / \mathrm{m}$

Example: A fused quartz sphere has a thermal diffusivity of $9.5 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}$. a diameter of 25 mm and $\mathrm{k}=1.52 \mathrm{~W} / \mathrm{m} . \mathrm{K}$. the sphere is initially at a uniform temperature $T i=25^{\circ} \mathrm{C}$. It's suddenly subjected to a convection environment at $T \infty=200^{\circ} \mathrm{C}$ and $h=110 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}$. Calculate the temperature at the centre and at the radias of 6.4 mm after 4 min .

## Solution

$\frac{k}{h r_{0}}=1.105$
$\frac{\alpha t}{r_{0}^{2}}=1.46$
From figure $4.11 \frac{\theta_{0}}{\theta_{i}}=0.048 \Rightarrow T_{0}=200+0.0485(25-200)=191.6^{\circ} \mathrm{C}$
2) for $r=6.4 \mathrm{~mm}$,

From figure 4.14, $\frac{\theta}{\theta_{0}}=0.87 \Rightarrow T=200+0.87(191.6-200)=192.7^{\circ} \mathrm{C}$
or
$\frac{\theta}{\theta_{i}}=\frac{\theta}{\theta_{0}} \cdot \frac{\theta_{0}}{\theta_{i}}=0.87 \times 0.048=0.04176=\frac{T-T_{\infty}}{T_{i}-T_{\infty}}=\frac{T-200}{25-200}$
$\Rightarrow$
$T=192.7^{\circ} \mathrm{C}$

