Heisler Charts

A group of curves are used with unsteady-state case when **Biot no**. is greater than **0.1**. The most cases that to be treated are

- 1- Infinite plate (plate where thickness is very small in comparison to other dimension).
- 2- Infinite cylinder (where the diameter is very small compared to length)
- 3- Sphere.

The results of analysis for these geometries have been presented in graphical by Heister Charts (Figures 4.9 - 4.18). In these figures,

 $T\infty$ = Environment temperature. Ti = Initial temperature of the solid (t=0).

$$\theta = T(x,t) - T_{\infty} \quad or \quad T(r,t) - T_{\infty}$$
$$\theta_i = T_i - T_{\infty}$$
$$\theta_0 = T_0 - T_{\infty}$$

If a centerline temperature is desired, only one chart is required to obtain a value for θ_0 and then T_0 , i.e **Figure 4.9** for infinite plate, **Figure 4.10** for infinite cylinder and **Figure 4.11** for sphere.

For off-center temperature, two charts are required to calculate the proc $\frac{\theta}{\theta_i} = \frac{\theta_0}{\theta_i} \frac{\theta}{\theta_0}$

i.e <u>Figure 4.9</u> and <u>Figure 4.12</u> for infinite plate, <u>Figure 4.10</u> and <u>Figure 4.13</u> for infinite cylinder and <u>Figure 4.11</u> and <u>Figure 4.14</u> for sphere.

The heat losses for the infinite plate, infinite cylinder, and sphere are given in <u>Figures</u> <u>4-16</u>, <u>4.17</u> and <u>4.18</u>, respectively, where Q_0 represents the initial internal energy content of the body in reference to the environment temperature, which is

$$Q_0 = \rho c V(T_i - T_\infty) = \rho c V \theta_i$$

In these figures Q is the actual heat lost by the body in time t.

The Biot and Fourier Numbers

The temperature profiles and heat flows may all be expressed in terms of two dimensionless parameters called the Biot and Fourier numbers:

Biot Number (Bi) =
$$\frac{h s}{k}$$
, $s = V/A$
Fourier number (Fo) = $\frac{\alpha t}{s^2} = \frac{k t}{\rho cp s^2}$

All value of the Bi no. means that internal-conduction resistance is negligible in comparison with surface-convection resistance.

All value of Fo no. means that along period of time is required to heat or cool the body.

Applicability of the Heisler Charts

The Heisler charts is applicable in the case of *Fo no*. is greater than 0.2.

$$(Fo) = \frac{\alpha t}{s^2} \rangle 0.2$$

Example: A steel plate (k=41 W/m.K, 5cm thick) is initially at a temperature of 425°C. its suddenly exposed on path side to a convention environment with h = 285 W/m².K and $T\infty = 65^{\circ}$ C. Determine the centre line temperature and the temperature inside the body 1.25cm from the surface after 24min. $\alpha = 1.172 \times 10^{-5}$ m²/s

Solution

$$2L = 5 \implies L = 2.5 cm, \quad t = 24 \times 60 = 1440 \text{ sec}$$

$$\frac{at}{L^2} = 25.7$$

$$\frac{k}{hL} = 5.75$$
From figure 4.9 $\frac{\theta_0}{\theta_i} = 0.015 \implies T_0 = 65 + 0.015(425 - 65) = 70.4^{\circ}\text{C}$ (Centre temperature)
From figure 4.12, $at x/L = 0.5$, $\frac{\theta}{\theta_0} = 0.98$
 $\therefore T = 65 + 0.98(70.4 - 65) = 70.3^{\circ}\text{C}$

Example: Along 6.5cm diameter solid cylinder steel (k=16.3 W/m.K, ρ =7817 kg/m³, cp=460 J/kg.K). It's initially a uniform temperature Ti = 150 °C. It's suddenly exposed to a convective environment at $T\infty = 50$ °C and h = 285 W/m².K. Calculate the temperature at 1) the axis of cylinder, and 2) a 2.5cm radial distance after 5min of exposure to the cooling flow 3) determine the total energy transferred from the cylinder per meter length during the first five min. of cooling.

Solution

$$D = 6.5, r_0 = 3.25 cm, \quad t = 5 \times 60 = 300 sec$$

$$\alpha = \frac{k}{\rho cp} = 0.4444 \times 10^{-5} m^2 / s$$

$$\frac{k}{hr_0} = 1.76$$

$$\frac{\alpha t}{r_0^2} = 1.26$$

From figure 4.10 $\frac{\theta_0}{\theta_i} = 0.35 \Rightarrow$
1) $T_0 = 50 + 0.35(150 - 50) = 85^{\circ}C$
2) From figure 4.13, $at r/r_0 = 0.77, \quad \frac{\theta}{\theta_0} = 0.86 \Rightarrow T = 50 + 0.86(85 - 50) = 80^{\circ}C$
3) From figure 4.17, $\frac{hr_0}{k} = 0.57, \quad \frac{h^2 \alpha t}{k^2} = 0.407 \Rightarrow \frac{Q}{Q_0} = 0.69$
 $Q_0 = \rho V cp(T_i - T_{\infty}), \quad V = \pi r_0 L$
 $\frac{Q_0}{L} = 1193000J / m$
 $\therefore \quad Q = 0.69 \times 1193000 = 823.170 kJ/m$

Example: A fused quartz sphere has a thermal diffusivity of 9.5×10^{-7} m²/s. a diameter of 25mm and k=1.52 W/m.K. the sphere is initially at a uniform temperature Ti = 25 °C. It's suddenly subjected to a convection environment at $T\infty = 200$ °C and h = 110 W/m².K. Calculate the temperature at the centre and at the radias of 6.4mm after 4min.

Solution

 $\frac{k}{hr_0} = 1.105$ $\frac{\alpha t}{r_0^2} = 1.46$ From figure 4.11 $\frac{\theta_0}{\theta_i} = 0.048 \Rightarrow T_0 = 200 + 0.0485(25 - 200) = 191.6^{\circ}\text{C}$ 2) for r = 6.4mm,
From figure 4.14, $\frac{\theta}{\theta_0} = 0.87 \Rightarrow T = 200 + 0.87(191.6 - 200) = 192.7^{\circ}\text{C}$ or $\frac{\theta}{\theta_i} = \frac{\theta}{\theta_0} \cdot \frac{\theta_0}{\theta_i} = 0.87 \times 0.048 = 0.04176 = \frac{T - T_{\infty}}{T_i - T_{\infty}} = \frac{T - 200}{25 - 200}$

 \Rightarrow

 $T = 192.7^{\circ}C$