

Lecture No. 2,3 "Ohms law"

Lecture two, three

"Ohms law"

Ohms law :

This law applies to electric conduction through good conductors and may be stated as follows :

The ratio of potential difference (V) between any two points on a conductor to the current (I) flowing between them , is constant ,

in other words,

Open and short circuit in series circuits :

1. Open circuit:

In this case there is no current flows through the circuit as shown in fig. 1.

l = 0

Fig. 1

2. Short circuit :

If the resistance is short circuited , the current will flow through the short circuit (no current flows through the shorted resistance)

as shown in fig. 2 .

Open and short circuit in parallel circuits :

1. Open circuit :

In this case , there is no current flow in the open branch as shown in fig. 3 .

l 2 = 0

| = |1+|3

2. short circuit :

In this case , there is no current flow through R1 , R2 and R3 because the total current (I) pass through the short circuit as shown in fig. 4 .

Al-Mustaqbal University College

Voltage divider rule (V.D.R: (

In series circuits , voltage across any resistance could be obtained in terms of total voltage as follows :

Voltage across resistance equal to the total voltage multiply by the value of this resistance divided by the sum of all resistances .

Example : Using voltage divider rule (V.D.R.), find V1, V2, V3 And V ' from fig. 5.

Current divider rule (C.D.R: (

In parallel circuits , branch current could be obtained in terms of the total current as follows :

Branch current equal to the total current multiply by the resistance of other branch divided by the sum of all resistances .

Example : Using current divider rule (C.D.R.), calculate I1, I2 and I3 from fig. 6.

To find I 1 , the other resistances are ($4 \ // \ 10$)

 $\frac{4 \text{ x } 10}{4 + 10} = 2.857 \Omega$

$$I_1 = 20 x - \frac{2.857}{7 + 2.857} = 5.796 A$$

To find I 2 , the other resistances are ($7\,//$ 10) .

$$7 \times 10$$

------ = 4 Ω
7 + 10
$$4$$

I₂ = 20 x ----- = 10 A

4 + 4

http://www.mustaqbal-college.edu.iq/

To find I 3 , the other resistances are (7 / / 4) .

 $7 \ge 4$ ------ = 2.545 Ω 7 + 4

 $I_{3} = 20 \text{ x} - \frac{2.545}{2.545 + 10} = 4.057 \text{ A}$