Lecture No. 2,3

${ }^{66}$ Ohms law"

Lecture two, three

"Ohms law"

Ohms law :
This law applies to electric conduction through good conductors and may be stated as follows:

The ratio of potential difference (V) between any two points on a conductor to the current (I) flowing between them, is constant,
in other words,

Open and short circuit in series circuits :

1. Open circuit:

In this case there is no current flows through the circuit as shown in fig. 1 .
I = 0

Fig. 1

2. Short circuit :

If the resistance is short circuited, the current will flow through the short circuit (no current flows through the shorted resistance)
as shown in fig. 2 .

Fig. 2
$\mathbf{I}=\frac{\mathbf{V}}{\mathbf{R}_{1}+---\mathbf{R}_{2}}$

Open and short circuit in parallel circuits :

1. Open circuit :

In this case, there is no current flow in the open branch as shown in fig. 3 .

Fig. 3
$12=0$
$I=11+13$

2. short circuit :

In this case , there is no current flow through R1, R2 and R3 because the total current (I) pass through the short circuit as shown in fig. 4.

Fig. 4

$r_{i} \quad$ Where $r i$ is the internal resistance of the battery .

Voltage divider rule (V.D.R :

In series circuits, voltage across any resistance could be obtained in terms of total voltage as follows:

Voltage across resistance equal to the total voltage multiply by the value of this resistance divided by the sum of all resistances .

Example : Using voltage divider rule (V.D.R.) , find V1, V2 , V3 And V ' from fig. 5 .

Fig. 5
$V_{1}=V \times \frac{R_{1}}{R_{1}+R_{2}+R_{3}}=21 \times \frac{1}{1+2+-\cdots}=3 \mathrm{v}$
$V_{2}=V \times \frac{R_{2}}{R_{1}+R_{2}+R_{3}}=21 \times \frac{2}{1+2+4}=6 v$
$V_{3}=V \times \frac{R_{3}}{R_{1}+R_{2}+R_{3}}=21 \times \frac{4}{1+2+4}=12 \mathrm{v}$
$V_{4}=V \times \frac{R_{2}+R_{3}}{R_{1}+R_{2}+R_{3}}=21 \times \frac{2+4}{1+2+4}=18 \mathrm{v}$

Current divider rule (C.D.R :

In parallel circuits, branch current could be obtained in terms of the total current as follows:

Branch current equal to the total current multiply by the resistance of other branch divided by the sum of all resistances.

$$
\begin{aligned}
& I_{1}=I \times \frac{R_{2}}{R_{1}+R_{2}} \\
& I_{2}=I \times \frac{R_{1}}{-R_{1}+R_{2}}
\end{aligned}
$$

Example : Using current divider rule (C.D.R.) , calculate I 1, I 2 and I 3 from fig. 6 .

V Fig. 6
To find I 1 , the other resistances are ($4 / / 10$)

$$
\begin{aligned}
& 4 \times 10 \\
& ------=2.857 \Omega \\
& I_{1}=20 \times \frac{2.857}{7+---2.857}=5.796 \mathrm{~A}
\end{aligned}
$$

To find 12 , the other resistances are ($7 / / 10$).
7×10
--------- $=4 \Omega$
$7+10$

$$
I_{2}=20 \times \frac{4}{4+4}=10 \mathrm{~A}
$$

To find 13 , the other resistances are ($7 / / 4$).
7×4
-------- = 2.545Ω
$7+4$

$$
I_{3}=20 \times \frac{2.545}{2.545+------10}=4.057 \mathrm{~A}
$$

