

DNA translation and protein

• Translation is the first stage of protein biosynthesis.

• In translation, (mRNA) produced by transcription is decoded by the ribosome to produce a specific amino acid chain, or polypeptide, that will later fold into an active protein.

• Translation occurs in the cell's cytoplasm, where the large and small subunits of the ribosome are located, and bind to the mRNA.

Translation process

The ribosome facilitates decoding by inducing the binding of tRNAs with complementary anticodon sequences to mRNA.

• The tRNAs carry specific amino acids that are chained together into a polypeptide as the mRNA passes through and is "read" by the ribosome.

• the entire ribosome/mRNA complex will bind to the outer membrane of the rough endoplasmic reticulum and release the nascent protein polypeptide inside for later vesicle transport and secretion outside of the cell.

<u>Ribosomes</u>

Ribosomes are small particles consisting of RNA and associated with proteins that function to synthesize proteins. **Ribosomes** can be found floating within the cytoplasm or attached to the endoplasmic reticulum. There are two types of ribosome:

1- Prokaryotic ribosomes (**70S**) is smaller than eukaryotic Ribosomes . It is composed of two subunit (large subunit **50S** and small subunit **30S**).

2- Eukaryotic ribosomes (80 S) is larger than prokaryotic Ribosomes . It is composed of two subunit (large subunit 60S and small subunit 40S).

The smaller subunit fits into a depression on the surface of the larger one. The A, P, and E sites on the ribosome play key roles in protein synthesis.

Stages of translation

1-The initiation stage

The initiation stage of translation brings together mRNA, tRNA bearing the first amino acid of the polypeptide, and two subunits of a ribosome.

The start codon in all mRNA molecules has the sequence AUG and codes for methionine.

the initiating tRNA in the P site, and the A site free for binding to the next tRNA.

• The ribosome moves along the mRNA in a 5' to 3' direction, in a step-wise process, recognizing each subsequent codon.

2. The elongation stage

In the elongation stage the mRNA is bound to the complete two subunit ribosome,

The peptidyltransferase enzyme then catalyzes the formation of a peptide bond between the free N terminal of the amino acid at the A site, and the Carboxyl end of the amino acid at the P site, which is actually connected to the tRNA.

3. The termination

*The final stage is termination when the ribosome reaches a stop codon in the mRNA.. One of the three stop codons (UAA, UGA, UAG) enters the A site. No tRNA molecules bind to these codons so the peptide and tRNA in the P site become hydrolysed releasing the polypeptide into the cytoplasm.

1st position	2nd position				
	U	С	A	G	3rd position
U	Phe Phe Leu Leu	Ser Ser Ser Ser	Tyr Tyr stop stop	Cys Cys stop Trp	DCAG
С	Leu Leu Leu Leu	Pro Pro Pro Pro	His His Gln	Arg Arg Arg	DOAG
Α	lle lle lle Met	Thr Thr Thr Thr Thr	Asn Asn Lys Lys	Ser Ser Arg Arg	DOAG
G	Val Val Val Val	Ala Ala Ala	Asp Asp Glu Glu	G G G G G G G G G G G G G G G G G G G	U C A G
	enserve 17	Amino	Acids		
Asn: A Asn: A Asp:A Cys C	rginine sparagine spartic acid	Glu: Glutamine Glu: Glutamic acid Gly: Glycine Ha: Histidine le: Isoleucine	Lys: Lysine Met: Methioni Phe: Ptenylal Pro: Proline	ne Trp: Try lanine Tyr: Tyn Val: Val	eonine ptophane osisne ine

Molecular biology Assist lect. <u>Alaa Yousif Oudah</u>

