Fin Types

A) Rectangular Fin
B) Triangular Fin
C) Parabolic Fin
D) Annular (Circulator) fin of rectangular profile.

Figure 2-11 | Efficiencies of straight rectangular and triangular fins.

Figure 2-12 | Efficiencies of circumferential fins of rectangular profile, according to Reference 3.

For parabolic fin, $L c=L$ and $A m=L \times t / 3$.

Fin Heat Exchanger Design

(Used with Circulator rectangular profile)
1-Calculate the area without fins.

$$
A_{\text {noFin }}=\pi D L
$$

2-Calculate the heat transfer without fins

$$
q_{\text {noFin }}=h A_{\text {noFin }}\left(T_{\text {base }}-T_{\infty}\right)
$$

3-Calculate (L)

$$
L=0.5\left(D_{\text {Fin }}-D_{\text {tube }}\right)
$$

4-Calculate $\left(r_{2} c\right)$

$$
r_{2} c=\text { Fin radius }+\frac{\text { Thickness }(t)}{2}
$$

5- Calculate ($L c$)

$$
L c=L+\frac{\operatorname{Thickness}(t)}{2}
$$

6-Calculate ($A m$ or $A p$)

$$
A m=L c \times t
$$

7-Calculate $\left(r_{2} c / r_{\text {tube }}\right)$

8-Calculate $L c^{3 / 2} \sqrt{\frac{h}{k A m}}$

9-Use the figure of circulator fins to find efficiency of fin $\left(\eta_{\text {Fin }}\right)$.

10-Calculate area of fin $\left(A_{F i n}\right)$

$$
A_{\text {Fin }}=2 \pi\left(r_{2} c^{2}-r_{1}^{2}\right)
$$

11- Calculate the heat transfer of fin

$$
q_{\text {Fin }}=q_{\text {max }}=\eta_{\text {Fin }} h A_{\text {Fin }}\left(T_{\text {base }}-T_{\infty}\right)
$$

12- Calculate area of unfin $\left(A_{F i n}\right)$

$$
A_{\text {unFin }}=\pi D S, S=\text { Spacebetween two fins }
$$

13- Calculate the heat transfer of unfin

$$
q_{\text {unFin }}=h A_{\text {unFin }}\left(T_{\text {base }}-T_{\infty}\right)
$$

14- Calculate the total heat transfer of fins

$$
q_{\text {totalFin }}=n\left(q_{\text {Fin }}+q_{\text {unFin }}\right), n=\text { number of fins }
$$

15-Calculate the fin performance.

$$
\varepsilon=\frac{q_{\text {total, }, \text { in }}}{q_{\text {no Fin }}}
$$

Example: Steam in a heating system flows through tubes whose outer diameter is 3 cm and whose wall are maintained at a temperature of $120^{\circ} \mathrm{C}$. Circular aluminium alloy fins $(k=180$ $\mathrm{W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$) of outer diameter 6 cm and constant thickness at 2 mm , are attached with tubes. The space between two fins is 3 mm and there are 200 fins per meter length of the tube. The heat is transferred to the surrounding air at $25^{\circ} \mathrm{C}$ with $h=60 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}$. Determine the increase in heat transfer from the tube per meter of its length as a result of adding fins.

Solution.

$$
\begin{aligned}
& A_{\text {noFin }}=\pi D L=\pi \times 0.03 \mathrm{~m} \times 1 \mathrm{~m}=0.0942 \mathrm{~m}^{2} \\
& q_{\text {noFin }}=h A_{\text {noFin }}\left(T_{\text {base }}-T_{\infty}\right)=60 \times 0.0942 \times(120-25)=537 \mathrm{~W} \\
& L=0.5\left(D_{\text {Fin }}-D_{\text {tube }}\right)=0.5(0.06-0.03)=0.015 \\
& r_{2} c=\text { Fin radius }+\frac{\text { Thickness }(t)}{2}=0.03+(0.002 / 2)=0.031 \\
& L c=L+\frac{\text { Thickness }(t)}{2}=0.015+(0.002 / 2)=0.016 \mathrm{~m} \\
& \text { Am }=L c \times t=0.016 \times 0.002=0.000032 \mathrm{~m}^{2} \\
& \frac{r_{2} c}{r_{\text {tube }}}=\frac{0.031}{0.015}=2.07 \\
& L c^{3 / 2} \sqrt{\frac{h}{k A m}}=(0.016)^{3 / 2} \sqrt{\frac{60}{180 \times 0.000032}}=0.207
\end{aligned}
$$

From figure 2.12, $\eta_{\text {Fin }}=0.96$
$A_{\text {Fin }}=2 \pi\left(r_{2} c^{2}-r_{1}^{2}\right)=2 \pi\left((0.031)^{2}-(0.015)^{2}\right)=0.004624 m^{2}$
$q_{\text {Fin }}=\eta_{\text {Fin }} h A_{\text {Fin }}\left(T_{\text {base }}-T_{\infty}\right)=0.96 \times 60 \times 0.004624 \times(120-25)=25.3 \mathrm{~W}$
$A_{\text {unFin }}=\pi D S=\pi \times 0.03 \times 0.002=0.0000283 \mathrm{~m}^{2}$
$q_{\text {unFin }}=h A_{\text {unFin }}\left(T_{\text {base }}-T_{\infty}\right)=60 \times 0.0000283 \times(120-25)=1.6 \mathrm{~W}$
$q_{\text {totalFin }}=n\left(q_{\text {Fin }}+q_{\text {unFin }}\right)=200(25.3+1.6)=5380 \mathrm{~W}$
$q_{\text {increase }}=q_{\text {totalFin }}-q_{\text {noFin }}=5380-537=4843 \mathrm{~W}$
$\varepsilon=\frac{q_{\text {total } \text { Fin }^{n}}}{q_{\text {noFin }}}=\frac{5380}{537} \cong 10$ per meter tube length

