

EX. 4

Determination of Chloride by Mohr method

Purpose of this experiment

Determination the concentration of silver in precipitation method

Principle of Mohr's method

* Mohr's method used to determines the chloride ion concentration of a solution by titration with silver nitrate AgNO_{3}. A soluble chromate salt (K 2 CrO 4) is added as the indicator. This produces a yellow color solution as the silver nitrate solution is slowly added, a precipitate of silver chloride formed.

$$
A g(a q)+C l(a q) \rightarrow \operatorname{AgCl}(s)
$$

This method use chromate as an indicator, chromate forms a precipitant with Ag ions, but this precipitant has a greater solubility than that of AgCl therefore AgCl is formed first and after all Cl ions is consumed

* The end point of the titration occurs when all the chloride ions are precipitated, then additional silver ions react with the chromate ions of indicator, potassium chromate, to form a red brown precipitant of silver chromate.

$$
2 \mathrm{Ag}_{(a q)}^{+}+\mathrm{CrO}_{4(a q)}^{-2} \rightarrow \mathrm{Ag}_{2} \mathrm{CrO}_{4(s)}
$$

Chemicals and tools

$\mathrm{AgNO}_{3}, \mathrm{~K}_{2} \mathrm{CrO}_{4}, \mathrm{NaCl}$, distilled water, burette, pipette, stand, clump, brush, conical flask, spatula, funnel, volumetric flask, washing bottle, beaker, dropper, balance, watch glass.

Experimental work:

1- Wash the burette with distilled water and small amount of (0.1) N of AgNO_{3}.

2- Fill the burette with (0.1) N of AgNO_{3}.
3- Take (5) ml of NaCl by pipette and put it in a conical flask.
4- Add (5) drops of $\mathrm{K}_{2} \mathrm{CrO}_{4}$ indicator to the conical flask and mix well.
5- Titrate with AgNO_{3} until the appearance of red-brown precipitate.
6- Repeat the titration 3 times and take the average.

- Calculate the concentration of Chloride ion in normality by using the law:

$$
(N \times V)_{A g N O_{3}}=(N \times V)_{\mathrm{NaCl}}
$$

$$
(\text { Average }=\mathrm{V} 1+\mathrm{V} 2+\mathrm{V} 3 / 3)
$$

