BME 322 Signals and Systems for BME

\author{

- 6 -
 - Impulse Response -
 Dr. Zaidoon AL-Shammari
 Lecturer / Researcher
 Department of Biomedical Engineering Al-Mustaqbal University College, Babylon - IRAQ
 zaidoon.waleed@mustaqbal-college.edu.iq
}

Impulse Response

- An impulse response for a filter is a the response of the filter to an impulse.

Impulse Response

- The impulse response for a filter is designated as $\mathrm{h}[\mathrm{n}]$.
- The impulse response can be calculated from the difference equation by replacing the input $x[n]$ and output of the filter by $\delta[n]$ and $\mathrm{h}[\mathrm{n}]$ respectively.

Transfer Function

- Transfer function, $\mathrm{H}(\mathrm{z})$ of digital filters is the ratio of output to input in the z domain.

$$
H[z]=\frac{Y[z]}{X[z]}
$$

Transfer Function

Term-by-term transformation of a general difference equation.

$$
\begin{aligned}
& N \quad M \\
& \sum_{k=0}{ }_{k=0} y a[n-k] \sum_{k=0}^{+}{ }_{k} b x[n-k] \\
& H[z]=\frac{\sum_{k=0}^{M} b_{k} z^{-1}}{\sum_{k=0}^{N} a_{k} z^{-1}}
\end{aligned}
$$

Example 1

Determine the transfer function of a digital filter described by the difference equation.

$$
\begin{gathered}
2 y[n]+y[n-1]+0.9 y[n-2] \\
=x[n-1]+x[n-4]
\end{gathered}
$$

Example 1 (solution)

Taking z transforms term by term:.

$$
\begin{gathered}
2 Y[z]+z^{-1} Y[z]+0.9 z^{-2} Y[z] \\
\quad=z^{-1} X[z]+z^{-4} X[z] \\
H[z]=\frac{z^{-1}+z^{-4}}{2+z^{-1}+0.9 z^{-2}}
\end{gathered}
$$

Finite Impulse Response (FIR) Filters

- FIR filters are nonrecursive filters.
- The input-output relation of the FIR filters in time domain:

$$
y[n]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

b_{k} are the filter coefficients

- FIR filters have a finite-duration impulse response.
- FIR filters take the number of samples equals to the number of past inputs for the impulse response to become zero.

Finite Impulse Response (FIR) Filters

- This FIR filter has the effect of averaging every N samples in the input signal.
- Any filter with this type of impulse response is called as a moving average filter.

Example 2

- A FIR filter has a set of filter coefficients $\{b k\}=\{3,-1,2,1\}$. Determine the difference equation for the filter.

Example 2 (solution)

The length of the filter is 4 with $\mathrm{M}=3$.

$$
y[n]=3 x[n]-x[n-1]+2 x[n-2]+x[n-3]
$$

Example 3

Determine the first six samples in the impulse response for the FIR filter.

$$
y[n]=0.25(x[n]+x[n-1]+x[n-2]+x[n-3])
$$

Example 3 (solution)

Substituting $\delta[\mathrm{n}]$ for $x[n]$ and $\mathrm{h}[\mathrm{n}]$ for $y[n]$.

$$
\begin{aligned}
h[n] & =0.25(\delta[n]+\delta[n-1]+\delta[n-2]+\delta[n-3]) \\
h[0] & =0.25(\delta[0]+\delta[-1]+\delta[-2]+[\delta-3]) \\
& =0.25(1.0+0.0+0.0+0.0)=0.25 \\
h[1] & =0.25(\delta[1]+\delta[0]+\delta[-1]+\delta[-2]) \\
& =0.25(0.0+1.0+0.0+0.0)=0.25
\end{aligned}
$$

Example 3 (solution)

$$
\begin{aligned}
h[2] & =0.25(\delta[2]+\delta[1]+\delta[0]+\delta[-1]) \\
& =0.25(0.0+0.0+1.0+0.0)=0.25
\end{aligned}
$$

$$
\begin{aligned}
h[3] & =0.25(\delta[3]+\delta[2]+\delta[1]+\delta[0]) \\
& =0.25(0.0+0.0+0.0+1.0)=0.25
\end{aligned}
$$

$$
\begin{aligned}
h[4] & =0.25(\delta[4]+\delta[3]+\delta[2]+\delta[1]) \\
& =0.25(0.0+0.0+0.0+0.0)=0.0
\end{aligned}
$$

$$
\begin{aligned}
h[5] & =0.25(\delta[5]+\delta[4]+\delta[3]+\delta[2]) \\
& =0.25(0.0+0.0+0.0+0.0)=0.0
\end{aligned}
$$

Example 3 (solution)

Advantages of FIR

- They can have exactly linear phase.
- They are always stable.
- The design methods are generally linear.
- They can be realized efficiently in hardware.
- The filter startup transients have finite duration

Disadvantages of FIR

- The primary disadvantage of FIR filters is that they often require a much higher filter order than IIR filters to achieve a given level of performance.
- Correspondingly, the delay of these filters is often much greater than for an equal performance IIR filter.

Direct-form FIR structures

- FIR filters of order M is characterized by $\mathrm{M}+1$ coefficients which require $\mathrm{M}+1$ multipliers, and M two-input adder.
- For FIR filters in which the multiplier coefficients are precisely the coefficients of the transfers function are called direct-form structures

Direct-form FIR structures

- FIR filters transfer function:

$$
H[z]=\frac{Y[z]}{X[z]}=\sum_{\mathrm{k}=0}^{M} h_{k} z^{-k}
$$

- which is a polynomial in z^{-1} of degree M .

Direct-form FIR structures

- Expanding the filters transfer function:

$$
\begin{aligned}
y[n] & =h[0] x[n]+h[1] x[n-1]+h[2] x[n-2] \\
& +h[3] x[n-3]+\ldots+h[N] x[n-N]
\end{aligned}
$$

Example 4

- Based on the transfer function, realize the digital filter using the direct form.

$$
H(z)=\left(1-2 z^{-1}\right)\left(1+z^{-1}-4 z^{-2}\right)
$$

Example 4 (solution)

- Since the transfer function has only the numerator part or zeroes, therefore this is an FIR filter.

$$
H(z)=\frac{Y[z]}{X[z]}=\left(1-2 z^{-1}\right)\left(1+z^{-1}-4 z^{-2}\right)
$$

Example 4 (solution)

$$
Y(z)=X(z)-z^{-1} X(z)-6 z^{-2} X(z)+8 z^{-3} X(z)
$$

$$
y(n)=x(n)-x(n-1)-6 x(n-2)+8 x(n-3)
$$

