AL-MUSTAQBAL UNIVERSITY COLLEGE

Department of Biomedical Engineering

Dr. Zaidoon AL-Shammari
BME 322
Signals and systems for BME

\author{

- 3 -
 Discrete-Time Signals
}

DISCRETE-TIME

 SIGNALS

Dr. Zaidoon AL-Shammari

Lecturer / Researcher
Department of Biomedical Engineering
Faculty of Engineering AL-MUSTAQBAL UNIVERSITY COLLEGE

Learning Outcomes

Students are able to:
1.represent discrete-time signals in frequency domain.
2.perform basic operations on discrete-time signals.

Discrete-time Signals

- A discrete-time signal is defined only for discrete values of the independent variable at uniform intervals $\mathrm{t}=\mathrm{nT}$ where T is the interval between time samples and n is an integer.
- This signal, which is a sequence of numbers, may be obtained by sampling a continuous time signal.

Sampling Process

Sampling Process

Sampling Process

Sampling Process

$$
\mathrm{x}(\mathrm{t}) \xrightarrow{\mathrm{T}} \underset{\mathrm{X}}{-} \mathrm{x}[2 \mathrm{~T}]
$$

Sampling Process

$$
x[n T]=\{x[0], x[T], x[2 T], \ldots x[n T]\}
$$

Unit-sample Sequence $\delta(\mathbf{n})$

- A discrete-time impulse or an impulse

$$
\delta[n]= \begin{cases}1 & n=0 \\ 0 & n \neq 0\end{cases}
$$

$\delta[\mathrm{n}]$

Example 1

Determine the values $\delta[0], \delta[3]$ and $\delta[-2]$.

Example 2

Draw the signals:
(a) $\mathrm{x}[\mathrm{n}]=488[\mathrm{n}]$
(b) $\mathrm{x}[\mathrm{n}]=-2 \delta[\mathrm{n}]$
(c) $\mathrm{x}[\mathrm{n}]=\delta[\mathrm{n}-3]$
(d) $\mathrm{x}[\mathrm{n}]=5 \delta[\mathrm{n}]+4 \delta[\mathrm{n}-1]-\delta[\mathrm{n}-3]$

Example 2

(a) $\mathrm{x}[\mathrm{n}]=488[\mathrm{n}]$

Example 2

(b) $x[n]=-2 \delta[n]$

Example 2

$$
\begin{aligned}
& \text { (c) } \mathrm{x}[\mathrm{n}]=\delta[\mathrm{n}-3] \\
& \mathrm{x}[\mathrm{n}] \\
& \xrightarrow{\sim} \\
& -3-2-1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \\
& \delta[n] \longrightarrow Z^{Z^{-1}} \xrightarrow{\delta[n-1]} Z^{\delta[n-2]} \text { Z } \delta[n-3]
\end{aligned}
$$

Example 2

(d) $\mathrm{x}[\mathrm{n}]=5 \delta[\mathrm{n}]+4 \delta[\mathrm{n}-1]-\delta[\mathrm{n}-3]$

Example 2

(d) $\mathrm{x}[\mathrm{n}]=5 \delta[\mathrm{n}]+4 \delta[\mathrm{n}-1]-\delta[\mathrm{n}-3]$

Unit-step Sequence u(n)

$$
\left\{\left[\begin{array}{lll}
1 & n \geq 0 \\
0 & n & n \\
0 & n & 0
\end{array}\right.\right.
$$

Determine the values of $u[-1], u[0]$ and $u[1]$.

Example 4

Draw the signals:
(a) $x[n]=3 u[n]$
(b) $\mathrm{x}[\mathrm{n}]=\mathrm{u}[-\mathrm{n}]$
(c) $x[n]=u[n-3]$
(d) $x[n]=u[3-n]$
(e) $x[n]=u[n]+2 u[n-2]$

Example 4

(a) $\mathrm{x}[\mathrm{n}]=3 \mathrm{u}[\mathrm{n}]$

Example 4

(b) $\mathrm{x}[\mathrm{n}]=\mathrm{u}[-\mathrm{n}]$

Example 4

(c) $\mathrm{x}[\mathrm{n}]=\mathrm{u}[\mathrm{n}-3]$

(d) $\mathrm{x}[\mathrm{n}]=\mathrm{u}[3-\mathrm{n}]$

Example 4

(e) $\mathrm{x}[\mathrm{n}]=\mathrm{u}[\mathrm{n}]+2 \mathrm{u}[\mathrm{n}-3]$

Example 4

(e) $\mathrm{x}[\mathrm{n}]=\mathrm{u}[\mathrm{n}]+2 \mathrm{u}[\mathrm{n}-3]$

