Departiment of Btonnetical Engineering

Faculty of Enginecting

Dr. Zaidoon AL Shammari

BME 322
 Signals and Systems for BME

\author{

- 2 -
 Continuous Time Signal
}

CONTINUOUS-TIME SIGNALS

Dr. Zaidoon AL_Shammari
Lecturer / Researcher
Department of Biomedical Engineering
Faculty of Engineering AL-MUSTAQBAL UNIVERSITY COLLEGE

Functional Notation

- For functions whose independent variable is either real numbers or complex numbers, the independent variable will be enclosed in parentheses .()
- For functions whose independent variable is integers the independent variable will be enclosed in brackets [].

Revision on Numbers

Real numbers are the numbers that we normally use and apply in real-world applications.
Real Numbers include:
Whole Numbers (like 0, 1, 2, 3, 4, etc)
Rational Numbers (like $3 / 4,0.125,0.333,1.1$, etc) Irrational Numbers (like $\pi, \sqrt{ } 2$, etc)
Real Numbers can also be positive, negative or Zero.

Signal Processing Systems

- Facilitate the extraction of desired information.

Signal Processing Systems - cont

discrete-time signal

digital signal

Classification of CT Signals

Periodic signals.

- Non periodic signals.

Periodic Signals

- A continuous-time signal, $\mathrm{x}(\mathrm{t})$ is a periodic signal if $x(t+n T)=x(t)$, where T is the period of the signal and n is an integer.
- Sinusoidal, square and triangular waves are periodic signals.

Periodic Signals - cont

For $\mathrm{x}(\mathrm{t})=\mathrm{x}_{1}(\mathrm{t})+\mathrm{x}_{2}(\mathrm{t})$, where $\mathrm{x}_{1}(\mathrm{t})$ and $\mathrm{x}_{2}(\mathrm{t})$ are two periodic signals with fundamental T_{1} and T_{2} respectively, $\mathrm{x}(\mathrm{t})$ is a periodic signal if $\mathrm{T}_{1} / \mathrm{T}_{2}=$ a rational number.

The fundamental period, T for $x(t)$ is the least common multiples (LCM) of T_{1} and T_{2}.

Least Common Multiples

- The smallest positive number that is a multiple of two or more numbers.
- The multiples of 4 are: $4,8,12,16,20,24,28$, $32,36,40,44, \ldots$
- The multiples of 5 are: $5,10,15,20,25,30,35$, $40,45,50, \ldots$
- So, the common multiples of 4 and 5 are: 20, 40, (and 60, 80, etc \ldots, too.)
- The smallest of the common multiples is 20 , so the least common multiple (LCM) of 4 and 5 is 20

Sinusoidal Signal

Time domain representation

$\mathrm{x}(\mathrm{t})=\mathrm{A} \cos \left(\omega_{0} \mathrm{t}+\theta\right)=\mathrm{A} \cos \left(2 \pi \mathrm{f}_{0} \mathrm{t}+\theta\right)$

Sinusoidal Signal Properties

- Frequency.
- Period.
- Peak (maximum) value.
- Peak-to-peak value.

Amplitude \& Phase Spectrums

Example 1

Write the analytical expression for the signal with the phase angle in degrees.

Example 1-cont

Peak (maximum) value, $\mathrm{A}_{(\mathrm{p})}=200$.

Period, $\mathrm{T}=1.333 \mathrm{~ms}-0.333 \mathrm{~ms}=1 \mathrm{~ms}$.

Frequency $=1 / \mathrm{T}=1 / 1 \mathrm{~ms}=1 \mathrm{kHz}$.

Example 1-cont

Example 2

Sketch a waveform for a signal, $\mathrm{x}(\mathrm{t})=5 \sin 754 \mathrm{t}$ with the :
(a) time in seconds.
(b) angle in degrees.
(c) angle in radians.

Example 2 - cont

Peak (maximum) value, $\mathrm{A}_{(\mathrm{p})}=5$.

Frequency, $\mathrm{f}=754 /(2 \pi)=120 \mathrm{~Hz}$.

Period, $\mathrm{T}=1 / \mathrm{f}=1 / 120 \mathrm{~Hz}=8.33 \mathrm{~ms}$.

Example 2-cont

Example 2-cont

Example 2 - cont

Example 6

Represent $x(t)=155 \cos \left(377 t-25^{\circ}\right)$ in frequency domain.

Example 7

Determine whether each of the following signal is periodic. If a signal is periodic, determine its fundamental period.
(a) $x(t)=\cos (t+\pi / 4)$
(b) $\mathrm{x}(\mathrm{t})=\cos (\pi / 3) \mathrm{t}+\sin (\pi / 4) \mathrm{t}$

Example 7 - cont

(a) $\mathrm{x}(\mathrm{t})=\cos (\mathrm{t}+\pi / 4)$
$x\left(t\left(=\cos (t+\pi / 4)\right.\right.$ is in the form $A \cos \left(2 \pi f_{0} t\right)$ where f_{0} is the fundamental frequency. In this case, $\mathrm{f}_{0}=1 /(2 \pi)$. Therefore, the fundamental frequency, $\mathrm{T}_{0}=1 / \mathrm{f}_{0}=2 \pi$

Example 7 - cont

(b) $x(t)=\cos (\pi / 3) t+\sin (\pi / 4) t$

This is the sum of two functions that are both periodic. Their fundamental periods are $\mathrm{T}_{1}=$ 6 seconds and $\mathrm{T}_{2}=8$ seconds respectively. $\mathrm{T} 1 / \mathrm{T} 2=6 / 8$ is a rational number, therefore $x(t)$ is a periodic signal.

The fundamental frequency, T_{0} is the least common multiples (LCM) which is 24 seconds.

