وزارة التعليم العالي والبحث العلمي كلية المستقبل الجامعة قسم الصيدلة _ المرحلة الاولى مختبر الكيمياء التحليلية / الكورس الاول

EX.2

Determination of the percentage of acetic acid

Purpose of this experiment

Determination percentage of Acetic acid in commercial vinegar sample

Chemicals and tools

Vinegar samples, NaOH, phenolphthalein indicator, distilled water, burette, pipette, stand, clump, brush, conical flask, spatula, funnel, volumetric flask, washing bottle, beaker, dropper, balance, watch glass.

Experimental work

1: preparation of (0.1) N NaOH

 $N = \frac{Weight}{equivalent \ weight} \times \frac{1000}{volume \ (ml)}$

$$eq. wt (NaOH) = \frac{M.wt}{n}$$
$$= \frac{(23) + (16) + (1)}{1} = \frac{40}{1} = 40$$
$$0.1 = \frac{wt}{40} \times \frac{1000}{1000} \qquad wt = 4 g$$

Then dissolved in water and transfer this solution to a (1000) ml volumetric flask. Dilute to the mark with D.W and mix thoroughly. Make a label.

2- Preparation of vinegar solution:

- 1- Take (10) ml of vinegar solution.
- 2- Add D.W to (10) ml until (100) ml (dilute).

3- <u>Determination of the percentage of acetic acid :</u>

- 1- Wash the burette with distilled water and small amount of (0.1) N of NaOH.
- 2- Fill the burette with (0.1) N of NaOH.
- 3- Take (5) ml of dilute vinegar sample by pipette and put it in a conical flask.
- 4- Add (2) drops of phenolphthalein indicator to the to the conical
- 5- Titrate with NaOH until the color change from colorless to pink.
- 6- Repeat the titration 3 times and take the average.
 - Calculate the concentration of acetic acid in normality by using the law:

 $(N \times V)_{NaOH} = (N \times V)_{CH_3COOH}$

(Average = V1 + V2 + V3 /3)

• Calculate the weight of acetic acid in (5) ml of solution:

$$N = \frac{Weight}{equivalent \ weight} \times \frac{1000}{volume \ (ml)}$$

- Then calculate the percentage of acetic acid $w\!/v\%$

$$W/v = rac{\text{weight of acetic acid}}{volume of solution} imes 100\%$$

• The equation of this reaction

 $CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O$