Buffer Solutions

A buffer is a solution that can resist pH change upon the addition of an acidic or basic components. It is able to neutralize small amounts of added acid or base, thus maintaining the pH of the solution relatively stable. This is important for processes and/or reactions which require specific and stable pH ranges.

Buffer in solutions

The pH of water and most solutions changes drastically when a small amount of acid or base is added.

However, when an acid or base is added to a buffer solution, there is little change in pH .

A buffer solution maintains pH by neutralizing small amounts of added acid or base.

Buffers may also contain a weak base and a salt containing its conjugate acid.

For example, blood contains buffers that maintain a consistent pH of about 7.4 .

If the pH of the blood goes slightly above or below 7.4 , changes in oxygen levels and metabolic processes can be drastic enough to cause death.

Even though we obtain acids and bases from foods and cellular reactions, the buffers in the body absorb those compounds so effectively that the pH of the blood remains essentially unchanged (see Figure 1)

Lec. 2

Buffers in the Body :

* The arterial blood has a normal $\mathbf{p H}$ of 7.35 to 7.45.
* If changes in $\mathrm{H}_{3} \mathrm{O}^{+}$lower the $\mathbf{p H}$ below 6.8 or raise it above 8.0, cells cannot function properly and death may result.
* In our cells, CO_{2} is continually produced as an end product of cellular metabolism.
* Some CO_{2} is carried to the lungs for elimination, and the rest dissolves in body fluids such as plasma and saliva, forming carbonic acid.
* As a weak acid, carbonic acid ionizes to give bicarbonate, $\mathrm{HCO}_{3}{ }^{-}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$
* More of the anion $\mathrm{HCO}_{3}{ }^{-}$is supplied by the kidneys to give an important buffer system in the body fluid: the $\mathrm{H}_{2} \mathrm{CO}_{3} / \mathrm{HCO}_{3}{ }^{-}$ buffer.
$\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{H}_{2} \mathrm{CO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HCO}_{3}^{-}(a q)$
- Excess $\mathrm{H}_{3} \mathrm{O}^{+}$entering the body fluids reacts with the $\mathrm{HCO}_{3}{ }^{-}$and excess OH^{-}reacts with the carbonic acid.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{CO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \longleftarrow-\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HCO}_{3}^{-}(a q) \\
& \text { Equilibrium shifts in the } \\
& \text { direction of the reactants }
\end{aligned}
$$

$$
\mathrm{H}_{2} \mathrm{CO}_{3}(a q)+\mathrm{OH}^{-}(a q) \longrightarrow \underset{\substack{\text { Equilibrium shifts in } \\ \text { the direction of the products }}}{\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{HCO}_{3}^{-}(a q)}
$$

Lec. 2 Medical Chemistry Dr.Nada Hasan

> - In the body, the concentration of carbonic acid is closely associated with the partial pressure of CO_{2}.
> If the CO_{2} level increases, it produces more $\mathrm{H}_{2} \mathrm{CO}_{3}$ and more $\mathrm{H}_{3} \mathrm{O}^{+}$, lowering the pH .

A condition called acidosis

A decrease in the CO 2 level leads to a high blood pH , a condition called alkalosis.

Qeustion

I.Which of the following represents a buffer system?

 Explain.a. NaOH and NaCl
b. $\mathrm{H}_{2} \mathrm{CO}_{3}$ and NaHCO_{3}
c. HF and KF
d. KCl and NaCl
2. Which of the following represents a buffer system? Explain.
a. $\mathrm{H}_{3} \mathrm{PO}_{3}$ b. NaNO_{3}
c. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
d. HCl and NaOH .

Lec. 2 Medical Chemistry ._-_Dr._Nada_Hasan

- 3. Consider the buffer system of hydrofluoric acid, HF, and its salt, NaF.
$\mathrm{HF}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{F}^{-}(a q)$
- a. The purpose of this buffer system is to:
- I. maintain [HF]

2. maintain [F]]
3. maintain pH

- b. The salt of the weak acid is needed to:

1. provide the conjugate base
2. neutralize added $\mathrm{H}_{3} \mathrm{O}^{+}$
3. provide the conjugate acid

- c. If OH " is added, it is neutralized by: I. the salt 2. $\mathrm{H}_{2} \mathrm{O}$ 3. $\mathrm{H}_{3} \mathrm{O}^{+}$
- d. When $\mathrm{H}_{3} \mathrm{O}^{+}$is added, the equilibrium shifts in the direction of the:

I. Reactants 2. Products
3. does not change

Lec. 2

4. Consider the buffer system of nitrous acid, HNO_{2}, and its salt, $\mathrm{NaNO}_{2}-$

$$
\mathrm{HNO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NO}_{2}^{-}(a q)
$$

a. The purpose of this buffer system is to:
I. maintain $\left[\mathrm{HNO}_{2}\right]$ 2. maintain $\left[\mathrm{NO}_{2}{ }^{-}\right]$
3. maintain pH
b.The weak acid is needed to:
l. provide the conjugate base
2. neutralize added $\mathrm{OH}^{\prime \prime}$
3. provide the conjugate acid
c. If $\mathrm{H}_{3} \mathrm{O}^{+}$is added, it is neutralized by:
I. the salt
2. $\mathrm{H}_{2} \mathrm{O}$
3. OH^{-}
d. When $\mathrm{OH}^{\prime \prime}$ is added, the equilibrium shifts in the direction of the:
I. reactants 2. Products 3. does not change
$\mathrm{pH}=\mathrm{pKa}+\log \frac{[\text { salt }]}{[\text { acid }]}$
$\mathrm{pOH}=\mathrm{pKb}+\log \frac{[\text { salt }]}{[\text { base }]}$
What is the pH of a solution containing 0.02 MHA and $0.01 \mathrm{M} \mathrm{A}^{-}$? pKa of $\mathrm{HA}=5.0$.

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pKa}+\log \frac{[\text { salt }]}{[\text { acid }]} \\
& \mathrm{pH}=5+\log \frac{0.01}{0.02} \\
& \mathrm{pH}=5+\log 0.5 \\
& \mathrm{pH}=4.69
\end{aligned}
$$

Lec. 2

1.0 What is the pH of 50.00 mL buffer solution which is 2.00 M in $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and 2.00 M in $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$? What is the new pH after 2.00 mL of 6.00 M HCl is added to this buffer ?

What is the new pH after 2.00 mL of 6.00 M NaOH is added to the original buffer?

Calculate the pH of a buffer solution prepared by dissolving 0.10 mole of cyanic acid, HCNO , and 0.50 mole of sodium cyanate, NaCNO , in enough water to make 0.500 liter of solution. For $\mathrm{HCNO}, K_{\mathrm{a}}=2.0 \times 10^{-4}$ at $25^{\circ} \mathrm{C}$.

