2 Lab.

## **Principles of pH meter**

**Purpose of the experiment :** The determination of pH value for three differently mixed volume buffer solutions of acetic acid and lead acetates.

## Theory

A **pH meter** is a device that measures the **pH** of a solution by measuring the voltage between two electrodes submerged in the solution.

A pH meter is used to determine the acidity or alkalinity of the solution.

**pH** is the concentration of hydrogen ions in the solution. A solution containing more H<sup>+</sup> ions remains acidic while the solution containing more OH<sup>-</sup> ions remains alkaline. pH value of solutions ranges from 1 to 14.



The formal definition of pH:

 $pH = -log^{[H+]}$ 

Represent the logarithmic function of the concentration of H<sup>+</sup> ions which express the reciprocal potential of hydrogen concentration on both sides of the bulb membrane. The pH value of a neutral solution equal to 7 according to the following example:

If  $[H^+] = 10^{-10}$  means that hydrogen concentration is low. It means that pH value = 10 so that the solution is alkaline.

But when  $[H^+] = 10^{-3}$  means that hydrogen concentration is high. It means that pH value = 3 so that the solution is acidic.

#### A pH electrode is composed of two main parts :

**1.** A glass electrode is a type of ion-selective electrode made of a doped glass membrane that is sensitive to a specific ion.

2. A reference electrode is an electrode which has a stable and wellknown electrode potential.

#### Parts of glass electrode :

- 1. Glass bulb (glass membrane the sensitive part).
- 2. Ag/AgCl electrode.
- 3. 0.1 KCl solution (glass electrode internal filling solution pH =7).
- 4. AgCl precipitated from glass electrode.
- 5. Ag/AgCl electrode or calomel electrode.
- 6. 0.1 KCl solution (reference electrode internal filling solution pH = 7).
- 7. Junction made of ceramic or capillary with asbestos or quartz fibre (used to electrically connect both measured solution and the internal filling solutions.



**2** Lab.

## **Buffer solutions:**

Is an aqueous solution consisting of a mixture of a weak acid and its conjugate base, or vice versa. Its pH changes very little when a small or moderate amount of strong acid or base is added to it and thus it is used to prevent changes in the pH of a solution. Buffer solutions are used as a means of keeping pH at a nearly constant value in a wide variety of chemical applications. for Example: Bicarbonate buffer is a mixture of carbonic acid (the weak acid) and the bicarbonate ion (the conjugate base):  $H_2CO_3 + HCO_3$ 

#### $pH = \log pKa + \log salt/acid$

### **Procedure:**

1. Prepare acetic acid-acetate buffer solutions according to the following table:

| pН | Vol. of 0.1 M acetic acid solution | Vol. of lead acetate solution |
|----|------------------------------------|-------------------------------|
| 3  | 16.94 ml                           | 3.06 ml                       |
| 4  | 7.14 ml                            | 12.86 ml                      |
| 5  | 1.044 ml                           | 18.956 ml                     |

2. Mix the above volumes in three beakers and measure pH value by pH meter.

# **Questions**:

- 1- What is pH-meter? Explain its parts.
- 2- Define reference electrode, glass electrode, buffer solution, pH?.