# Preparation Of Different Types Of Solution

<u>Concentration of a Solution :-</u> amount of solute present in a given quantity of solvent or solution.

<u>Molarity</u>:- is the concentration of a solution expressed as the number of moles of solute per liter of solution

Moles :- weight of sample/ molecular weight of sample

where

then

$$M = \frac{\text{Weight of solute}}{\text{m.wt solute} \times L \text{ solution}} = \frac{\text{grams}}{\text{m.wt} \times L}$$

Normality: is the concentration of solution expressed as the number of equivalent weights (equivalents) of solute per liter of solution.

A 1 normal (1 N) solution contains 1 equivalent weight of solute per liter

**Equivalent weight**: is equal to the molecular weight divided by valance number

normality = 
$$N = \frac{\text{number of equivalents of solute}}{1 \text{ liter of solution}}$$

where

of solution.

number of equivalents of solute = 
$$\frac{\text{Weight of solute}}{\text{equivalent weight of solute}}$$

then

$$N = \frac{\text{Weight of solute}}{\text{eq.wt solute} \times L \text{ solution}} = \frac{\text{grams}}{\text{eq.wt} \times L}$$

$$\text{eq.wt.} = \text{m.wt/n}$$

The preparation of solution is being either from liquid or solid substance

#### 1. Solid substances

a. To prepare volume (V) from solid chemical substance have the molecular weight (m.wt) and Molarity (M) using following equation:-

$$Wt = \frac{M * V_{(ml)} * m.wt}{1000}$$

V : volume (ml) Wt : weight (gm)

b. To prepare volume (V) from solid chemical substance have the equivalent weight (eq.wt) and Normality (N) using following equation:-

$$Wt = \frac{N * V (ml) * eq.wt}{1000}$$

#### Procedure:

Prepare 0.1 M from NaCl in volume 100 ml , the at.wt of Na =23 , Cl = 35.5?

$$VVt = \frac{M * V (ml) * m.wt}{1000}$$

$$m.wt = 23*1 + 35.5*1 = 58.5$$

g/mol

$$Wt = 0.585 g$$

# 2. Liquid substances

To prepare volume (V) from liquid chemical substance or concentration liquid substance have the Normality (N) using following equation:-

$$N = \frac{\text{Sp.gr * \% * 1000}}{\text{eq.wt}}$$

Sp.gr : Specific gravity

Eq.wt: equivalent weight

After that using dilution low

$$N_1 * V_1 = N_2 * V_2$$
  
Conc. dil.

#### Procedure:

Prepare 0.1 N from HCl in 100 ml  $H_2O$ , if you known the percentage 35.4% and specific gravity 1.18 . at.wt to H=1, Cl=35.5?

$$N = \frac{\text{Sp.gr * \% * 1000}}{\text{eq.wt}}$$

$$m.wt = 1*1 + 1*35.5 = 36.5 \text{ g/mol}$$

eq.wt = 
$$\frac{\text{m.wt}}{\text{n}} = \frac{36.5}{1} = 36.5$$

$$N = \frac{1.18 * \frac{35.4}{100} * 1000}{36.5}$$

$$N = 11.44$$

$$N_1 * V_1 = N_2 * V_2$$
  
Conc. dil.

$$11.44 * V_1 = 0.1 * 100$$

$$V_1 = 0.87 \text{ ml}.$$

### Percent Concentration

Percent concentration are generally expressed as part of solute per 100 part of total solution.

 $\underline{W/W~\%:}$  the weight of solute per weight of solution (solute + solvent). Ex: 5% (w/w) of NaCl contain 50 g of NaCl + 950 g of solvent.

$$w/w\% = \frac{wt. \text{ of solute}}{wt. \text{ of solution}} * 100 \%$$

 $\underline{V/V}$  %: the volume of liquid solute per total volume of solution (solute + solvent). Ex: 1% (v/v) of HCl contain 1 ml of HCl per 100 ml of solution.

Wt/V %: the weight of solute per volume of solution.

 $\underline{C_{ppm}}$ : is the concentration in part per million . One ppm is equivalent to (mg/l) or 1 (mg/kg).

$$ppm = \frac{mg \text{ of solute}}{L \text{ solution}}$$

## Dilution

is a useful method which allows you to calculate how to dilute a stock solution of known concentration

$$C_1 * V_1 = C_2 * V_2$$

Where  $C_1$  and  $V_1$  for concentration solution , and the  $C_2$  and  $V_2$  for dilution solution.

Q: 2.00 L of 0.800 M NaNO<sub>3</sub> must be prepared from a solution known to be 1.50 M in concentration. How many mL are required?