

Ministry of Higher Education and Scientific Research Al-Mustaqbal University College

Department of Technical Computer Engineering

Electrical control fundamentals

$3^{\text {rd }}$ Stage
Lecturer: Hussein Ali

2020-2021

Where,
$f_{s}(t)=$ Spring force required to deflect the spring a distance.
$x(t)=$ Deflection distance.
$K=$ Spring Constant
Slope of the curve of the load $\left(F_{s}\right)$ versus deflection (X) $v(t)=$ velocity

The input to the spring is usually the force $\left(F_{s}\right)$, and the output is the deflection $X(s)$. Therefore, the Block Diagram of it is

Figure 13. Block Diagram of Linear Spring.
b. Viscous Damper $B\left(\frac{N . S}{m}\right)$

Figure 14. Viscous Damper.

$$
f_{d}(t)=B v(t)
$$

$$
=B \frac{d x}{d t}
$$

Take the Laplace transform
$F_{d}(s)=B S X(s)$

Where,
$B=$ Viscous Damper Coefficient
$v(t)=$ velocity

The input is the force $\left(F_{d}\right)$, and the output is the displacement (X). The Block Diagram Representation is

| $F_{d}(s)$ |
| :---: |$\frac{1}{B S} \quad \xrightarrow[X(s)]{ }$

Figure 15. The Block Diagram of Viscous Damper.
c. Mass $M(\mathrm{~kg})$

Figure 16. Mass

By using the Newton's Second Law, "the algebraic sum of forces acting on a rigid body in a given direction is equal to the product of the mass of the body and its acceleration in the same direction, i.e:
$\sum f_{m}(t)=M a$

Where,
a is the acceleration in the considered direction.
$a=\frac{d^{2} x}{d t^{2}}$,
$\therefore \sum f_{m}(t)=M \frac{d^{2} x}{d t^{2}}$

Take the Laplace transform
$\sum F_{m}(s)=M S^{2} X(s)$

The Block Diagram Representation is

Figure 17. Block Diagram of a Mass.

d. Mass- Spring- Damper Combination

Series Combination

A series arrangement of the translational mechanical components is shown in figure below (Raven, 1961):

Figure 18. Series Combination (Raven, 1961).
For mass- spring- damper Combination shown, the spring and damper forces opposed to the motion caused by the applied force (F). The summation of the external forces acting on the mass is:

$$
\begin{array}{ll}
\sum F_{m}=F+M g-B \frac{d X}{d t}-K X & 1 \\
M \frac{d^{2} X}{d t^{2}}=F+M g-B \frac{d X}{d t}-K X \\
F=M \frac{d^{2} X}{d t^{2}}-M g+B \frac{d X}{d t}+K X
\end{array}
$$

Where,
g is the gravitational acceleration,
$M g$ is the weight of the mass.
It is convenient to make measurements with respect to some reference position X_{r}. Therefore

$$
\begin{equation*}
x=X-X_{r} \tag{4}
\end{equation*}
$$

Consequently, the force equation at the reference position is:

$$
F_{r}=B \frac{d X_{r}}{d t}+K X_{r}-M g
$$

$\because X_{r}$ is constant
$\therefore B \frac{d X_{r}}{d t}=0$.

Therefore, equation 5 is written

$$
\begin{equation*}
F_{r}=K X_{r}-M g \tag{6}
\end{equation*}
$$

F_{r} is the required force to maintain the mass equilibrium at the reference position X_{r}.

Subtract equation 6 from equation 3 .

$$
\begin{aligned}
& F-F_{r}=M \frac{d^{2} X}{d t^{2}}-M g+B \frac{d X}{d t}+K X-\left(K X_{r}-M g\right) \\
& F-F_{r}=M \frac{d^{2} X}{d t^{2}}+B \frac{d X}{d t}+K\left(X-X_{r}\right)
\end{aligned}
$$

Substitute equation 4 in 7.

$$
F-F_{r}=M \frac{d^{2}\left(x+X_{r}\right)}{d t^{2}}+B \frac{d\left(x+X_{r}\right)}{d t}+K x .
$$

$\because X_{r}$ is constant
$\therefore \frac{d^{2}\left(x+X_{r}\right)}{d t^{2}}=\frac{d^{2} x}{d t^{2}}$ and

$$
\frac{d\left(x+X_{r}\right)}{d t}=\frac{d x}{d t} .
$$

Let $f=F-F_{r}$, so the equation 8 can be written as:
$f=M \frac{d^{2} x}{d t^{2}}+B \frac{d x}{d t}+K x$.
For the series mechanical components, the force f is equal to the summation of the force acting on each individual component, and each component undergoes the same displacement x.

Take the Laplace transform for the equation 9.
$F(s)=M S^{2} X(s)+B S X(s)+K X(s)$
$F(s)=\left(M S^{2}+B S+K\right) X(s)$
The input to the system is the force F, and the output is the deflection X. Therefore, the transfer function is

$$
\frac{X(s)}{F(s)}=\frac{1}{M S^{2}+B S+K}
$$

The Block-Diagram representation for the equation 11 is (Raven, 1961)
\square
Figure 19. Block Diagram Representation of Mass- SpringDamper Series Combination (Raven, 1961).

Parallel Combination

A parallel arrangement of the translational mechanical components is shown in figure below:

Figure 20. Mass- Spring- Damper Parallel Combination.
For parallel components, the same force f is transmitted through each component, but the total displacement x is the summation of the individual displacement of each component.

