Hydrocarbons

Hydrocarbon: Compound composed of only carbon and hydrogen

Saturated Hydrocarbons: Compound with only single bonds

Unsaturated Hydrocarbons: Compounds with at least one double or triple bond.

TABLE 3-1 Hyd	Irocarbon Classifications	
Compound Type	Functional Group	Example
alkanes	none (no double or triple bonds)	$CH_3 - CH_2 - CH_3$, propane
alkenes	>C=C double bond	$CH_2 = CH - CH_3$, propene
alkynes	$-C \equiv C - $ triple bond	$H-C \equiv C-CH_3$, propyne
aromatics	benzene ring $C C C$	CH ₂ CH ₃ ethylbenzene

© 2013 Pearson Education, Inc.

Alkanes

Alkanes are organic compounds that consist entirely of single-bonded carbon and hydrogen atoms and lack any other functional groups. Alkanes have the general formula C_nH_{2n+2} and can be subdivided into the following three groups: the linear straight-chain

Physical Properties of Alkanes:

- Alkanes are colourless.
- Alkanes are less <u>dense</u> than water (alkanes float on top of water).
- Alkanes are <u>non-polar molecules</u> so they are more <u>soluble</u> in nonpolar solvents than they are in polar solvents. Alkanes are insoluble in water.
- The melting and boiling points of the shorter chain alkanes is low, but the melting and boiling of alkanes increase as the number of carbon atoms in the carbon chain increases.

Name	<u>Molecular</u> Formula	Molar Mass (g mol ⁻ 1)	Melting Point (°C)	Boiling Point (°C)	State (25°C, 101.3kPa)	Density of liquid (g cm ⁻³ , 20°C)	Flashpoint (°C)	Enthalpy of Combustion (kJ mol ⁻¹)	Uses
methane	CH ₄	16	-182	-162	gas			-889	major component of natural gas (fuel)
ethane	C ₂ H ₆	30	-183	-88.6	gas			-1560	component of natural gas (fuel)
propane	C ₃ H ₈	44	-188	-42.1	gas			-2217	component of liquefied petroleum gas (LPG), bottled gas (fuel)
butane	C ₄ H ₁₀	58	-138	-0.5	gas			-2874	component of liquefied petroleum gas (LPG), cigarette lighters (fuel)
pentane	C ₅ H ₁₂	72	-130	36.1	liquid	0.626	-49	-3536	component of petrol (gasoline, fuel)
hexane	C ₆ H ₁₄	86	-95.3	68.7	liquid	0.659	-22	-4190	component of petrol (gasoline, fuel)
heptane	C ₇ H ₁₆	100	-90.6	98.4	liquid	0.68	-4	-4847	component of petrol (gasoline, fuel)
octane	C ₈ H ₁₈	114	-56.8	126	liquid	0.703	13	-5506	major component of petrol (gasoline, fuel)
nonane	C ₉ H ₂₀	128	-50	151	liquid	0.72	31		component of petrol (gasoline, fuel)
decane	C ₁₀ H ₂₂	142	-30	174	liquid	0.730	46		component of petrol (gasoline, fuel)

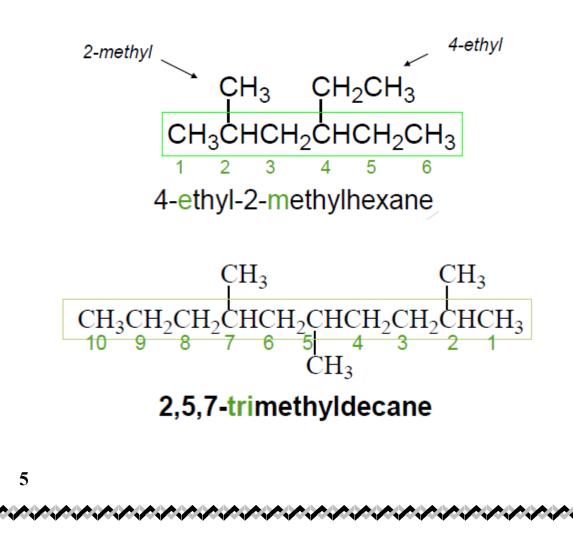
IUPAC Rules

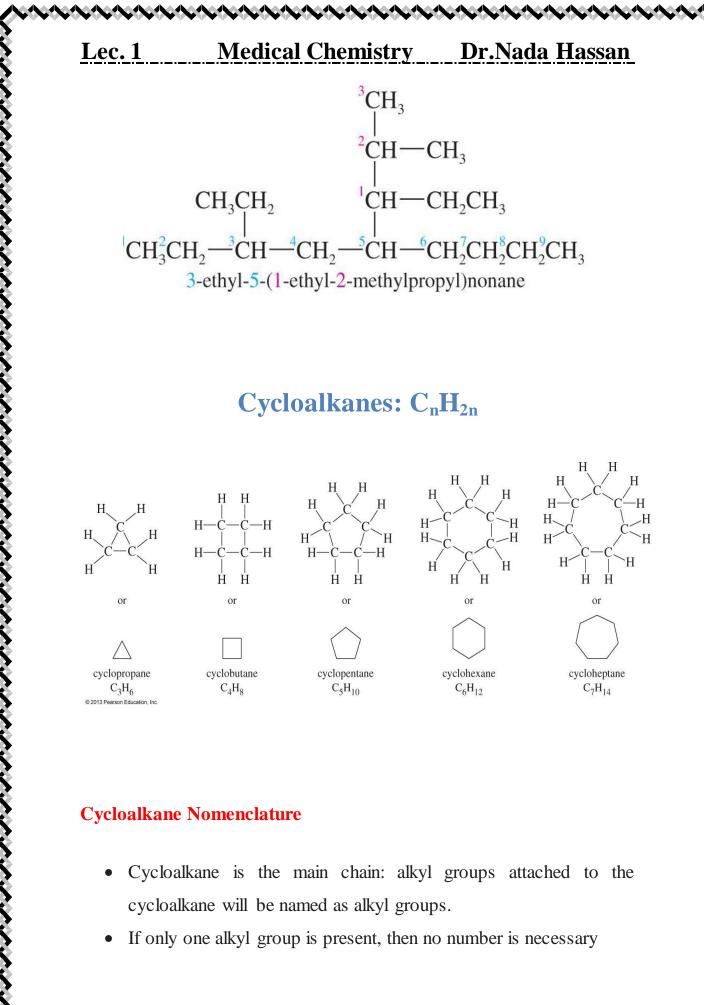
- Rule 1:Find the longest continuous chain of carbon atoms, and use the name of this chain as the base name of the compound.
- Rule 2:Number the longest chain, beginning with the end of the chain nearest a substituent.
- Rule 3:Name the groups attached to the longest chain as alkyl groups. Give the location of each alkyl group by the number of the main-chain carbon atom to which it is attached.
- Write the alkyl groups in alphabetical order regardless of their position on the chain.

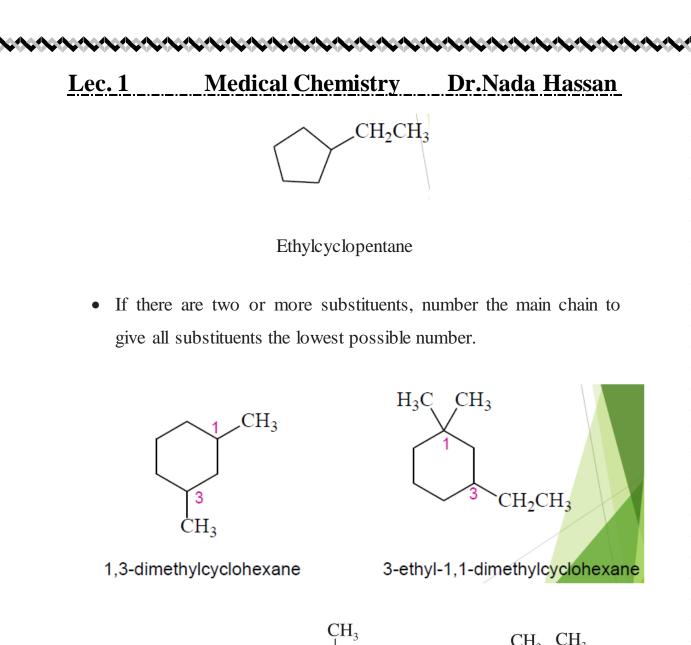
Sub-rules for IUPAC nomenclature

- 1. If there are two or more longest chains of equal length:
- 4 Choose the one having the largest number of substituents.
- **4** Choose the one having the simples substituents.
- 2. If both ends of the root chain have equidistant substituents.
- Begin numbering at the end nearest a third substituent, if one is present.
- **4** Begin numbering at the end nearest the first cited group

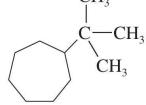
Common Alkyl Groups

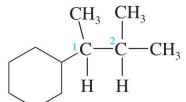

		r	
Parent alkane	Parent structure	Alkyl group structure	Alkyl group name
methane	CH ₄	CH ₃	methyl
ethane	CH ₃ CH ₃	CH ₂ CH ₃	ethyl
propane	CH ₃ CH ₂ CH ₃	CH ₂ CH ₂ CH ₃	propyl
		I	
		CH ₃ CHCH ₃	isopropyl
<i>n</i> -butane	CH ₃ CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ CH ₃	butyl
		∣ CH₃CHCH₂CH₃	sec-butyl
isobutene	CH ₃ CH ₃ CHCH ₃	CH ₃ CH ₂ CHCH ₃ CH ₃ 	Isobutyl
		CH₃CCH₃ 	t-butyl


Common Nonalkyl Groups

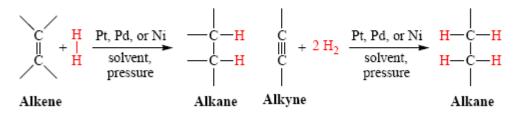

Table 11.6 Common Nonalkyl Groups

Group	Name
—F	fluoro
—Cl	chloro
—Br	bromo
—I	iodo
$-NO_2$	nitro
$-NH_2$	amino

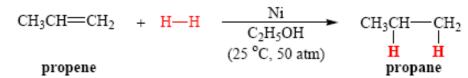

For example :



tert-butylcycloheptane

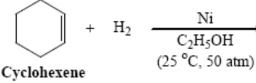

(1,2-dimethylpropyl)cyclohexane

Preparation of Alkanes

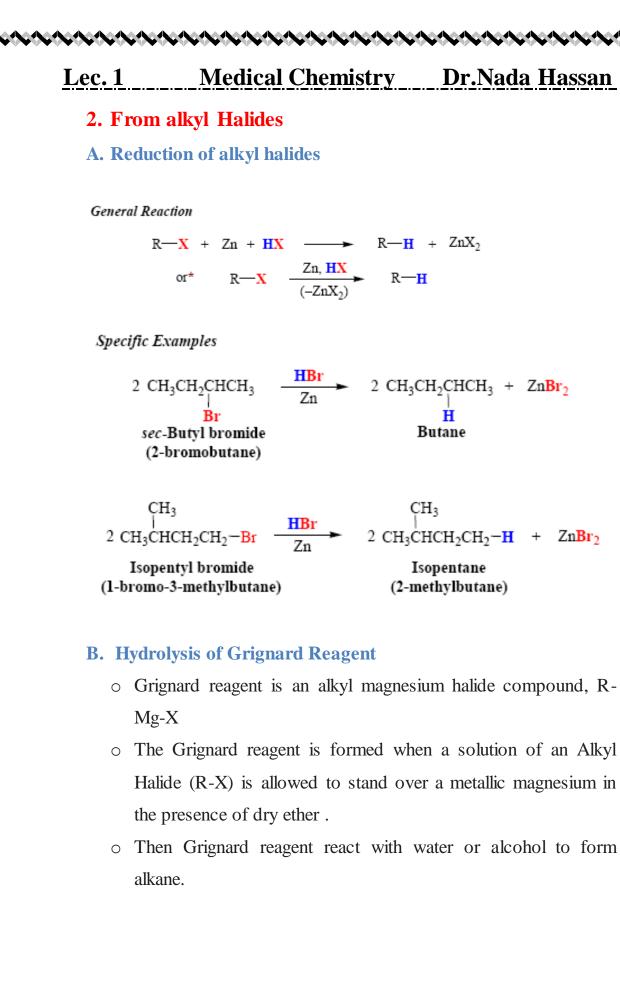

1. From Unsaturated Hydrocarbons (hydrogenation)

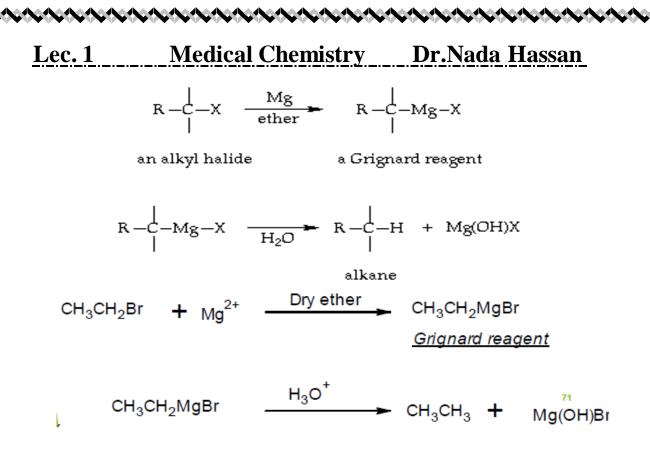
Unsaturated hydrocarbons (alkenes and alkynes) react with H_2 in the presence of finely divided catalysts such as platinum, palladium or nickel to form alkanes. This process is called hydrogenation.

General Reaction

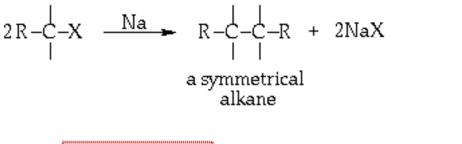

Specific Examples

$$\begin{array}{cccc} CH_{3} \\ H_{3}C - C = CH_{2} + H - H & \underbrace{Ni}_{C_{2}H_{5}OH} & H_{3}C - C - CH_{2} \\ (25 \ ^{\circ}C, 50 \ \text{atm}) & H & H \end{array}$$


2-Methylpropene



Cyclohexane


ZnBr₂

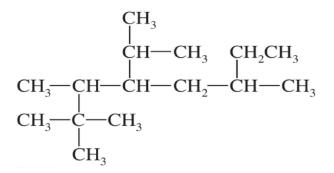
C. Wurtz Reaction

This is the reaction of two alkyl halides (R-X) with metallic sodium to give symmetrical alkanes.

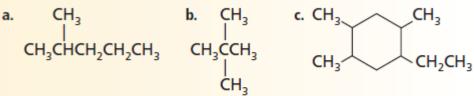
The wurtz reaction is a poor method for the preparation of unsymmetrical alkanes.

 $CH_3 \rightarrow Br + 2Na + Br \rightarrow CH_3 \xrightarrow{dry ether} CH_3CH_3 + 2NaBr$

Problem

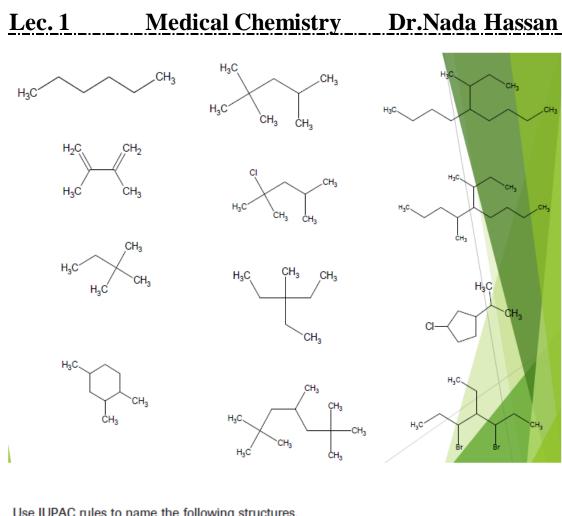

Give the structures of 4-isopropyloctane, 5-t-butyldecane and

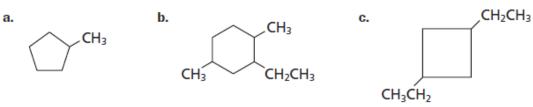
- a. 2,3-dimethyl-5-propyldecane
- b. 3,4,5-triethyloctane


Use the IUPAC rules to name the following structures.

a. $CH_3 CH_3$ b. $CH_3 CH_3$ c. CH_3 $| \ | \ | \ CH_3CHCH_2CHCH_2CH_3$ CH_3CHCH_3 $CH_2 CH_3 CH_3$ $| \ CH_3CHCH_2CHCH_2CHCH_3$ $CH_3CHCH_2CHCH_2CHCH_3$

Give a systematic (IUPAC) name for the following compound.


13. Name the following structures using IUPAC rules.


14. Describe the general properties of alkanes.

15. Draw the molecular structure for each of the following.

a. 3, 4-diethylheptanec. 1-ethyl-4-methylcyclohexaneb. 4-isopropyl-3-methyldecaned. 1,2-dimethylcyclopropane

Use IUPAC rules to name the following structures.

Challenge Draw the structures of the following cycloalkanes.

- a. 1-ethyl-3-propylcyclopentane
- b. 1,2,2,4-tetramethylcyclohexane

12