
alcohol

any of a class of <u>organic compounds</u> characterized by one or more hydroxyl (—OH) groups attached to a <u>carbon</u> atom of an alkyl group (<u>hydrocarbon</u> chain). Alcohols may be considered as organic derivatives of <u>water</u> (H₂O) in which one of the <u>hydrogen</u> atoms has been replaced by an alkyl group, typically represented by R in organic structures. For example, in ethanol (or <u>ethyl</u> <u>alcohol</u>) the alkyl group is the ethyl group, —CH₂CH₃.

General formula:-

R-OH

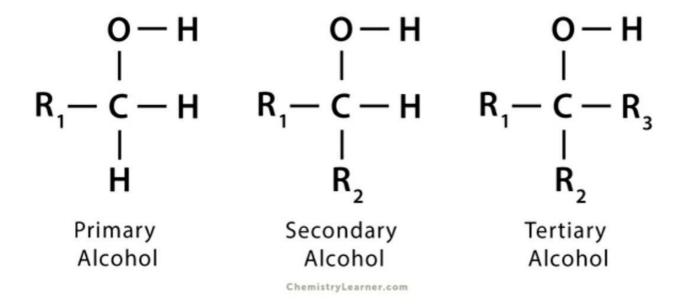
Physical properties:-

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. The boiling point of the alcohol ethanol is 78.29 °C, compared to 69 °C for the hydrocarbon hexane, and 34.6 °C for diethyl ether.

Toxicit

With respect to acute toxicity, simple alcohols have low acute toxicities.

Why is the boiling point of water higher than that of alcohol?


Water has more hydrogen bound than alcohol.

Classification of Alcohol

Priamy

Secondary

Tertiary

