# Methods of Expressing Concentration of Solutions 



A solution:- is a homogeneous mixture of one substance dissolved in another substance.

Concentration:- is a ratio of the amount of solute to the amount of solvent.

## Molarity

is the number of moles of solute dissolved in one liter of solution. The units, therefore are moles per liter, specifically it's moles of solute per liter of solution.

$$
\text { molarity }=\frac{\text { moles of solute }}{\text { liter of solution }}
$$

Example 1. What is the molarity of a 5.00 liter solution that was made with 10.0 moles of KBr ?

Solution: We can use the original formula. Note that in this particular example, where the number of moles of solute is given, the identity of the solute ( KBr ) has nothing to do with solving the problem.


Given: n . of moles of solute $=10.0$ moles
Liters of solution $=5.00$ liters

$$
\text { Molarity }=\frac{10.0 \text { moles of } \mathrm{KBr}}{\text {----------------------- Liters of solution }}=
$$

Answer $=2.00 \mathrm{M}$
n. of moles $=\frac{\text { Weight(grams })}{\text { M.wt }(\mathrm{g} / \mathrm{mol})}$

| Weight (g) | 1000 |
| :---: | :---: |
| Molecular Weight ( $\mathrm{g} / \mathrm{mol}$ ) | Volume (ml) |

Molecular Weight $=$ Sum. Of atomic weight
Example : Prepare 0.1 M of NaCl in 250 ml of D.Water from Solid?
$\mathrm{Wt}=\mathrm{M}$ x M.wt. x V(ml) / 1000
$=0.1 \times 58.5 \times 250 / 1000$
$=1.38 \mathrm{~g}$

Example 2 : What is the molarity of 5.30 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ dissolved in 400.0 mL solution?

Ans: $0.167 \mathrm{~mol} / \mathrm{L}$

## Normality

is the number of equivalents of solute dissolved in one liter of solution. The units, therefore are equivalents per liter, specifically it's equivalents of solute per liter of solution.

Normality $=\frac{\text { No. of equivalents of solute }}{\text { liter of solution }}$

Weight (g)
No. of equivalents $=$
Equivalent Weight (g/eq)

$\mathrm{Eq} . \mathrm{Wt}=\frac{\mathrm{M} . \mathrm{Wt}}{\mathrm{n}}$
$\mathrm{n}=$ No. of $(\mathrm{H})$ atoms for acids
for HCl
$\mathrm{n}=1$
$\mathrm{n}=\mathrm{No}$ of OH groups for bases
for $\mathrm{NaOH} \quad \mathrm{n}=1$
$\mathrm{n}=$ No of Cation atoms $(\mathrm{M}+)$ for salts
for $\mathrm{Na}_{2} \mathrm{CO}_{3} \quad \mathrm{n}=2$
$\mathrm{n}=$ No. of gained or lost electrons for oxidants and reductants for $\mathrm{KMnO}_{4} \quad \mathrm{n}=7$

## Relationship between Molarity and Normality



# M.Wt <br> Eq.Wt $=$ <br> $\qquad$ 

n

$$
\mathrm{N}=\mathrm{Mx} \mathrm{n}
$$

Q / what is the normality of $0.1 \mathrm{~mol} / \mathrm{L}$ of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ?
$\mathrm{N}=0.1 * 2=0.2 \mathrm{~N}$

## Weight - Volume Percentage (\% w/v)

It's the amount of solute present in $100 \mathbf{m L}$ of solution.

$$
\% \mathrm{w} / \mathrm{v}=\frac{\text { Weight of solute }(\mathrm{g})}{} \begin{aligned}
& \text { Volume of solution }(\mathrm{ml})
\end{aligned}
$$

Example : 2.0 L of an aqueous solution of potassium chloride contains 45.0 g of KCl . What is the weight/volume percentage concentration of this solution in $\mathrm{g} / 100 \mathrm{~mL}$ ?

Sol/
Convert the units (mass in grams, volume in mL ):
Mass of $\mathrm{KCl}=45.0 \mathrm{~g}$, volume of solution $=2.0 \mathrm{~L}=2.0 \mathrm{E} \times 10^{3} \mathrm{mLE}=2000 \mathrm{~mL}$
$\mathrm{w} / \mathrm{v}(\%)=[$ mass solute $(\mathrm{g}) \div$ volume solution $(\mathrm{mL})] \times 100$

Substitute in the values and solve:
$\mathrm{w} / \mathrm{v}(\%)=[45.0 \div 2000 \mathrm{~mL}] \times 100=2.25 \mathrm{~g} / 100 \mathrm{~mL}(\%)$

## Weight - Weight Percentage (\% w/w)

It's the amount of solute present in $100 \mathbf{g}$ of solution.

| $\text { \% w /w = ----------------------------- x } 100$ |  |
| :---: | :---: |
|  |  |
|  | Weight of solution (g) |

Example: An aqueous solution contains $42 \%$ by mass ethanol. What mass of ethanol is present in 250 g of solution?

Sol/
1- Extract the data from the question:
Aqueous solution is made up of two components, a solute (ethanol) and a solvent (water), mass $\%$ ethanol $=42 \%$,
$\operatorname{mass}_{(\text {solution })}=$ mass $_{(\text {ethanol) }}+\operatorname{mass}_{(\text {water) }}=250 \mathrm{~g}$
$\operatorname{mass}_{(\text {ethanol })}=? \mathrm{~g}$
2- Write the equation for finding mass \% ethanol:
mass $\%$ ethanol $=\operatorname{mass}($ ethanol $) \div \operatorname{mass}($ solution $) \times 100$
Re-arrange the equation to find mass of ethanol:
$\operatorname{mass}($ ethanol $)=$ mass $\%$ ethanol $\times$ mass $($ solution $) \div 100$
3-Substitute the values into the equation and solve:
$\operatorname{mass}($ ethanol $)=42 \times 250 \div 100=105 \mathrm{~g}$

## Volume - Volume Percentage (\% v/v)

It's the volume of solute present in $100 \mathbf{m L}$ of solution.


## Example 2:

A solution is prepared by dissolving 90 mL of hydrogen peroxide in enough water to make 3000 mL of solution. Identify the concentration of the hydrogen peroxide solution.

## Sol/

The given parameters are
Volume of solute $=90 \mathrm{~mL}$
Volume of solution $=3000 \mathrm{~mL}$
Substitute the values in the given formula,
Volume percent $=$ volume of solute $/$ volume of solution $\times 100 \%$
$=90 \mathrm{~mL} / 3000 \mathrm{~mL}$ x $100 \%$
Volume percent $=3 \%$
Q/ What is the weight/volume percentage concentration of 250 mL of aqueous sodium chloride solution containing 5 g NaCl ?

Calculate the weight/volume (\%) = mass solute $\div$ volume of solution $\times 100$ mass solute $(\mathrm{NaCl})=5 \mathrm{~g}$ volume of solution $=250 \mathrm{~mL}$

$$
\mathrm{w} / \mathrm{v}(\%)=5 \mathrm{~g} \div 250 \mathrm{~mL} \times 100=2 \mathrm{~g} / 100 \mathrm{~mL}(\%)
$$

Q / 2.0L of an aqueous solution of potassium chloride contains 45.0 g of KCl . What is the weight/volume percentage concentration of this solution in $\mathrm{g} / 100 \mathrm{~mL}$ ?
a. Convert the units (mass in grams, volume in mL ):
mass $\mathrm{KCl}=45.0 \mathrm{~g}$
volume of solution $=2.0 \mathrm{~L}=2.0 \times 10^{3} \mathrm{~mL}=2000 \mathrm{~mL}$
b. Calculate $\mathrm{w} / \mathrm{v}(\%)=$ mass solute $(\mathrm{g}) \div$ volume solution $(\mathrm{mL}) \times 100$

$$
\mathrm{w} / \mathrm{v}(\%)=45.0 \div 2000 \mathrm{~mL} \times 100=2.25 \mathrm{~g} / 100 \mathrm{~mL}(\%)
$$

Q / If you have 10.0 grams of $\mathrm{Br}_{2}$ and dissolve it in 1.00 L of cyclohexane, what is the molality of the solution? The density of cyclohexane is $0.779 \mathrm{~kg} / \mathrm{l}$ at room temperature.

## Solution /

First, work out the number of moles of bromine. $\mathrm{Br}_{2}$ has a molecular weight of $159.8 \mathrm{~g} / \mathrm{mole}$, so we have

$$
10 \mathrm{~g} /(159.8 \mathrm{~g} / \mathrm{mole})=0.063 \text { moles } \mathrm{Br}_{2}
$$

Next, convert the volume of solvent to the weight of solvent using the density $1.0 \mathrm{~L} * 0.779 \mathrm{~kg} / \mathrm{l}=0.779 \mathrm{~kg}$

Now just divide the two to get the molality
0.63 les $\mathrm{Br}_{2} / 0.779 \mathrm{~kg}$ cyclohexane $\mathbf{=} \mathbf{0 . 0 8 0}$ molal

## Parts per Millions ( PPM)

It is defined as the parts of a component per million parts $\left(10^{6}\right)$ of the solution. It is widely used when a solute is present in trace quantities.


Relationship between PPM and Molarity and Normality

$$
\text { PPM = M x M.Wt x } 1000
$$

PPM $=\mathrm{N} \times$ Eq.Wt $\times 1000$

Converting weight/volume ( $\mathrm{w} / \mathrm{v}$ ) concentrations to ppm $\mathrm{ppm}=1 \mathrm{~g} / \mathrm{m}^{3}=1 \mathrm{mg} / \mathrm{L}=1 \mu \mathrm{~g} / \mathrm{mL}$

1. A solution has a concentration of $1.25 \mathrm{~g} / \mathrm{L}$.

What is its concentration in ppm ?
a. Convert the mass in grams to a mass in milligrams:

$$
1.25 \mathrm{~g}=1.25 \times 1000 \mathrm{mg}=1250 \mathrm{mg}
$$

b. Re-write the concentration in $\mathrm{mg} / \mathrm{L}=1250 \mathrm{mg} / \mathrm{L}=1250 \mathrm{ppm}$
2. A solution has a concentration of $0.5 \mathrm{mg} / \mathrm{mL}$.

What is its concentration in ppm ?
a. Convert the volume to litres:
volume $=1 \mathrm{~mL}=1 \mathrm{~mL} \div 1000 \mathrm{~mL} / \mathrm{L}=0.001 \mathrm{~L}$
b. Re-write the concentration in $\mathrm{mg} / \mathrm{L}=0.5 \mathrm{mg} / 0.001 \mathrm{~L}=500 \mathrm{mg} / \mathrm{L}=500 \mathrm{ppm}$

Converting weight/weight (w/w) concentrations to ppm
$1 \mathrm{ppm}=1 \mathrm{mg} / \mathrm{kg}=1 \mu \mathrm{~g} / \mathrm{g}$

1. A solution has a concentration of $0.033 \mathrm{~g} / \mathrm{kg}$.

What is its concentration in ppm ?
a. Convert mass in grams to mass in milligrams:
$0.033 \mathrm{~g}=0.033 \mathrm{~g} \times 1000 \mathrm{mg} / \mathrm{g}=33 \mathrm{mg}$
b. Re-write the concentration in $\mathrm{mg} / \mathrm{kg}=33 \mathrm{mg} / \mathrm{kg}=33 \mathrm{ppm}$
2. A solution has a concentration of $2250 \mu \mathrm{~g} / \mathrm{kg}$.

What is its concentration in ppm?
a. Convert mass in $\mu \mathrm{g}$ to mass in mg:
$2250 \mu \mathrm{~g}=2250 \mu \mathrm{~g} \div 1000 \mu \mathrm{~g} / \mathrm{mg}=2.25 \mathrm{mg}$
b. Re-write the concentration in $\mathrm{mg} / \mathrm{kg}=2.25 \mathrm{mg} / \mathrm{kg}=2.25 \mathrm{ppm}$

Parts Per Million (ppm) Concentration Calculations

1. 150 mL of an aqueous sodium chloride solution contains 0.0045 g NaCl .

Calculate the concentration of NaCl in parts per million (ppm).
a. $\mathrm{ppm}=$ mass solute $(\mathrm{mg}) \div$ volume solution ( L )
b. mass $\mathrm{NaCl}=0.0045 \mathrm{~g}=0.0045 \times 1000 \mathrm{mg}=4.5 \mathrm{mg}$
volume solution $=150 \mathrm{~mL}=150 \div 1000=0.150 \mathrm{~L}$
c. concentration of $\mathrm{NaCl}=4.5 \mathrm{mg} \div 0.150 \mathrm{~L}=30 \mathrm{mg} / \mathrm{L}=30 \mathrm{ppm}$
2. What mass in milligrams of potassium nitrate is present in 0.25 kg of a 500 ppm $\mathrm{KNO}_{3 \text { (aq) }}$ ?
a. $\mathrm{ppm}=$ mass solute $(\mathrm{mg}) \div$ mass solution ( kg )
b. Re-arrange this equation to find the mass of solute: mass solute $(\mathrm{mg})=\mathrm{ppm} \times$ mass solution $(\mathrm{kg})$
c. Substitute in the values: mass $\mathrm{KNO}_{3}=500 \mathrm{ppm} \times 0.25 \mathrm{~kg}=125 \mathrm{mg}$
3. A student is provided with 500 mL of 600 ppm solution of sucrose.

What volume of this solution in millilitres contains 0.15 g of sucrose?
a. $\mathrm{ppm}=$ mass solute $(\mathrm{mg}) \div$ volume solution (L)
b. Re-arrange this equation to find volume of solution: volume solution ( L ) $=$ mass solute $(\mathrm{mg}) \div \mathrm{ppm}$
c. Substitute in the values: volume solution $(\mathrm{L})=(0.15 \mathrm{~g} \times 1000 \mathrm{mg} / \mathrm{g}) \div 600=0.25 \mathrm{~L}$
d. Convert litres to millilitres: volume solution $=0.25 \mathrm{~L} \times 1000 \mathrm{~mL} / \mathrm{L}=250 \mathrm{~mL}$

