ALMUSTAQBAL UNIVERSITY COLLEGE

Medical Labs Techniques Department
Stage : First year students
Subject :General chemistry 1 - Lecture 2
Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Methods of expressing concentrations:

Concentration represents the amount of dissolved substance (solute) per unit amount of solution, It can be expressed by :

1) Chemical units : equivalent weight - Molecular weight(mole).
2) Physical units : mass - volume

1. Chemical Units:

The mole:

Is a unit for the amount of a chemical species, always associated with a chemical formula and represents Avogadro's number (6.022×10^{23}) of particles represented by that formula .

Molar Mass :Is the mass in grams of 1 mole of the substance ,it is calculated by summing the atomic masses of all the atoms appearing in a chemical formula .

$$
\text { Molar mass }(\text { M.wt })=\sum \text { atomic molar mass }
$$

Example :- The molar mass for formaldhyde $\mathrm{CH}_{2} \mathrm{O}$ is :
M. $w t_{\mathrm{CH}_{2} \mathrm{O}}=\sum(1$ mole carbon +2 mole hydrogen +1 mole oxygen $)$ atom
$M . w t_{C H_{2} O}=1 \times 12 \mathrm{gm}+2 \times 1.0 \mathrm{gm}+1 \times 16.0 \mathrm{gm}$

$$
=30.0 \mathrm{gm} / \mathrm{mole} \text { of } \mathrm{CH}_{2} \mathrm{O}
$$

Example :- Molar mass of glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$:
M.wt ${c_{6} \mathrm{H}_{12} \mathrm{O}_{6}}=\sum$ (6mole carbon +12 mole hydrogen +6 mole oxygen $)$
$M . w t_{C_{6} H_{12} O_{6}}=6 \times 12.0+12 \times 1.0+6 \times 16.0=180 \mathrm{gm} / \mathrm{mole}$

Important Relations:

$\mathrm{M} . \mathrm{wt}=\mathrm{g} / \mathrm{mole}$ or $\mathrm{mg} / \mathrm{mmole}$
no. moles $=\frac{\mathrm{wt}(\mathrm{g})}{\mathrm{M} \cdot \mathrm{wt}(\mathrm{g})}$
Mole $=10^{3} \mathrm{mmole} \quad, \quad$ mole $=\frac{1}{1000}$ mole $=10^{-3} \mathrm{~mole}$
Example: How many grams of $\mathrm{Na}^{+}(\mathrm{M} . \mathrm{wt}=22.99 \mathrm{~g} / \mathrm{mol})$ are contained in
$(\mathbf{2 5 . 0} \mathbf{~ g m})$ of $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{M} . \mathrm{wt}=142.0 \mathrm{~g} / \mathrm{mol})$?

Solution:

$\underset{\text { 1mole }}{\mathrm{Na}_{2} \mathrm{SO}_{4}} \longrightarrow \underset{\text { 2mole }}{2 \mathrm{Na}^{+}}+\underset{\text { 1mole }}{\mathrm{SO}_{4}{ }^{2-}}$
$n_{\mathrm{Na}_{2} \mathrm{SO}_{4}}=\frac{\mathrm{Wt}_{(\mathrm{g})} \mathrm{Na}_{2} \mathrm{SO}_{4}}{\mathrm{M} . \mathrm{Wt}_{(\mathrm{g})} \mathrm{Na}} \mathrm{SO}_{4} \mathrm{SO}_{4}=\frac{25.0}{142.0}=0.176$ moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
$n_{\mathrm{Na}^{+}}=$number of moles $\mathrm{Na}_{2} \mathrm{SO}_{4} \times \frac{2 \text { moles }_{\mathrm{Na}^{+}}}{1 \text { moles }_{\mathrm{Na}_{2} \mathrm{SO}_{4}}}=$ no. of moles of Na^{+}
$n_{\mathrm{Na}^{+}}=0.176 \times 2=0.352$ moles Na^{+}
Mass $(\mathrm{g})=$ no. of moles x molar $\operatorname{mass}(\mathrm{g} / \mathrm{mol})$
mass $\mathrm{Na}^{+}(\mathrm{g})=$ moles $\mathrm{Na}^{+} \times 22.99(\mathrm{~g}) \mathrm{Na}^{+}$
mass $\mathrm{Na}^{+}(\mathrm{g})=0.352 \times 22.99=8.10(\mathrm{~g}) \mathrm{Na}^{+}$
$\mathrm{NaCl} \longrightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-} \quad$ or $\quad \mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow 3 \mathrm{Na}^{+}+\mathrm{PO}_{4}{ }^{3-}$

Molar concentration (M):

Molarity: Number of moles of solute per liter of solution Or number of mmoles of solute per milliter of solution.

$$
\mathbf{M}=\frac{\text { number of moles of solute }}{\text { volume of solution(liter) }}
$$

Or

$$
\mathbf{M}=\frac{\text { number of mmole of solute }}{\text { volume of solution }(\mathrm{mL})}
$$

Example:
What is $\left(\mathrm{C}_{\mathrm{NaCl}}\right)$ the concentration of $\mathrm{NaCl}(58.5 \mathrm{~g} / \mathrm{mol})$ in grams per milliliter $(\mathrm{g} / \mathrm{mL})$ for its $\mathbf{0 . 2 5} \mathrm{M}$ aqueous solution?

Solution:
$0.25 \mathrm{M}=0.25 \mathrm{~mol} / \mathrm{L} \equiv 0.25 \mathrm{mmol} / \mathrm{mL}=0.25 \times 10^{-3} \mathrm{~mole} / \mathrm{mL}$
$\mathrm{C}_{\mathrm{NaCl}}$ in $(\mathrm{g} / \mathrm{mL})=0.25 \times 10^{-3} \mathrm{~mole} / \mathrm{mL} \times \operatorname{M.wt}(\mathrm{g} / \mathrm{mol})=\mathrm{g} / \mathrm{mL}$
$\mathrm{C}_{\mathrm{NaCl}}$ in $(\mathrm{g} / \mathrm{mL})=0.25 \times 10^{-3} \mathrm{~mole} / \mathrm{mL} \times 58.5 \mathrm{~g} / \mathrm{mol}=0.0146 \mathrm{~g} / \mathrm{mL}$
Example :
Calculate $\left(\mathrm{C}_{\mathrm{K}+}\right)$ the concentration of potassium ion ($39.1 \mathrm{~g} / \mathrm{mol}$) in grams per liter for a 0.250 M aqueous solution of KCl (potassium chloride).

Solution:
$\mathrm{KCl} \rightarrow \mathrm{K}^{+}+\mathrm{Cl}^{-}$
$0.25 \mathrm{M} \mathrm{KCl}=0.25 \mathrm{~mol} / \mathrm{L} \mathrm{K}^{+}$
Each mol of $\mathrm{K}^{+}=39.1 \mathrm{~g}=$ M.wt
Then $\mathrm{C}_{\mathrm{K}+}$ in $\mathrm{g} /$ Liter $=\mathbf{0 . 2 5} \mathbf{~ m o l} /$ liter $\times 39.1 \mathrm{gm} / \mathrm{mol}=9.77 \mathrm{~g} /$ liter

Molarity(M) Calculations:
$\operatorname{Molarity}(M)=\frac{\text { no.of moles }}{\text { volume }(L)}=\frac{\frac{w t}{}(\mathrm{~g})}{\mathrm{M}_{\mathrm{wt}}} \mathrm{V}_{\mathrm{L}} \quad$
$\operatorname{Molarity}(M)=\frac{w t_{(g)}}{M . w t x V_{L}} \quad\left(V_{L}=\frac{V_{m L}}{1000}\right)$
$\operatorname{Molarity}(M)=\frac{\mathrm{wt}_{(\mathrm{g})}}{\operatorname{M.wt} \times \frac{\mathrm{VmL}}{1000}}$
$\operatorname{Molarity}(M)=\frac{\mathbf{w t}_{(\mathrm{g})} \times 1000}{M . \mathbf{w t ~ x ~}_{\mathbf{m L}}}$

Example: Calculate the molar concentration of KNO_{3} aqueous solution that contains ($\mathbf{2 . 0 2} \mathrm{g}$) of $\mathrm{KNO}_{3}(\mathrm{M} . \mathrm{wt}=101 \mathrm{~g} / \mathrm{mole})$ in $(\mathbf{2} .0 \mathrm{~L})$ of solution.

Solution:

or
$\operatorname{Molarity}(M)=\frac{\mathrm{wt}_{(\mathrm{g})} \times 1000}{\mathrm{M} . \mathrm{wt} \times \mathrm{V}_{\mathrm{mL}}}=\frac{2.02_{(\mathrm{g})} \times 1000}{101 \times 2000 \mathrm{~mL}}=0.10 \mathrm{M}$
Analytical Molarity: The number of moles of solute in one liter of solution or number of mmole in one mililiter .
e.g: a sulfuric acid $(98 \mathrm{~g} / \mathrm{mol})$ solution that has an analytical concentration of (1.0 M) can be prepared by dissolving (1.0 mole) or $(98 \mathrm{~g})$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in water and dilution to exactly (1.0 L). $\left\{\operatorname{Molarity}(\mathrm{M})=\frac{1 \text { mole }}{1 L}=1 \mathrm{M}\right\}$

Example: Describe the preparation of ($\mathbf{2} .00$ liter) of $(\mathbf{0} .18 \mathrm{M})$ aqueous solution of BaCl_{2} from solid $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ ($244.3 \mathrm{gm} /$ mole) .

Solution:
$\mathrm{BaCl}_{2} . \mathbf{2} \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{BaCl}_{\mathbf{2}}+\mathbf{2} \mathbf{H}_{\mathbf{2}} \mathrm{O}$
1mole 1mole 2mole
Each ($\mathbf{1} \mathbf{m o l e} \mathbf{B a C l}_{2} \mathbf{2} \mathbf{2 H}_{\mathbf{2}} \mathbf{O}$) gives ($\mathbf{1} \mathbf{m o l e} \mathbf{B a C l}_{\mathbf{2}}$).
As Molarity $(\mathbf{M})=\frac{\text { No.of moles }}{\text { volume }(\mathbf{L})}$
No. moles = molarity M x volume (L)
for 2 liter of $0.18 \mathrm{M} \mathrm{BaCl}_{2}$ solution we have
No. moles BaCl_{2} in Solution $=0.18$ mole $\frac{\mathrm{BaCl}_{2}}{\mathrm{~L}} \times 2.00 \mathrm{~L}=0.36 \mathrm{~mole}\left(\mathrm{BaCl}_{2}\right)$
Then No .moles $\mathrm{BaCl}_{2} . \mathbf{2 \mathbf { H } _ { 2 }} \mathbf{O}$ needed $=$ No. moles $\mathbf{B a C l}_{\mathbf{2}}=\mathbf{0 . 3 6}$ moles
Mass (g) = No.of moles x molar mass
The mass of $\left(\mathrm{BaCl}_{\mathbf{2}} . \mathbf{2 \mathrm { H } _ { 2 } \mathrm { O }) = 0 . 3 6 \mathrm { mole } \times 2 4 4 . 3 \mathrm { gm } / \mathrm { mol } = 8 7 . 9 5 \mathrm { gm } \mathrm { BaCl }} \mathbf{2} \mathbf{2} \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathrm{O}\right.$
The solution is prepared by dissolving 87.95 gm of $\mathrm{BaCl}_{2} \cdot \mathbf{2} \mathrm{H}_{2} \mathrm{O}$ in water and complete the volume to 2.00 L

Example:

Describe the preparation of 500 mL of $\mathbf{0 . 0 7 4 0} \mathbf{M ~ C l}^{-}$solution from solid $\mathrm{BaCl}_{2} . \mathbf{2 H}_{2} \mathrm{O}$ ($\mathbf{2 4 4 . 3 \mathrm { g } / \mathrm { mol }) \text { . }}$

Solution:

$\mathrm{BaCl}_{2} \cdot \mathbf{2} \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ba}^{2+}+2 \mathrm{Cl}^{-}+2 \mathbf{H}_{2} \mathrm{O}$
1 mole 2 moles
No. of moles $=$ Molarity $(\mathbf{m o l} /$ liter $) \mathbf{x}$ Volume (Liters)
$\mathrm{V}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{mL}}}{1000}=\frac{500}{1000}=0.5 \mathrm{~L}$

No .moles $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ needed $=\frac{1}{2}\left(\right.$ No. of moles of $\left.\mathrm{Cl}^{-}\right)$
No .moles $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ needed $=\frac{0.037}{2}=0.0185 \mathrm{~mol}$
mass $\mathbf{B a C l}_{2} \cdot \mathbf{2} \mathbf{H}_{2} \mathrm{O}=$ moles $\mathrm{BaCl}_{2} . \mathbf{2} \mathrm{H}_{\mathbf{2}} \mathrm{O} \times \mathrm{Mwt}(244.3)$
mass $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}=0.0185 \times 244.3=4.519 \mathrm{gm}$
Then the required solution is prepared by dissolving 4.519 g of $\mathrm{BaCl}_{2} . \mathbf{2 \mathrm { H } _ { 2 } \mathrm { O }}$ in water and dilute to $0.500 \mathrm{~L}(500 \mathrm{~mL})$.
or
Weight $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}=\frac{0.017 \frac{\mathrm{~mol}}{\text { liter }} \mathrm{Cl}^{-} \times 0.5 \text { liter } \times 244.3 \mathrm{~g} / \mathrm{mol}}{2}=4.519 \mathrm{gm}$

Excercises:

1.Describe the preparation of 500 mL of $0.0740 \mathrm{M} \mathrm{Cl}^{-}$aqueous solution from solid $\mathrm{CaCl}_{2} \mathbf{2} \mathbf{2} \mathrm{H}_{2} \mathrm{O}$ ($\mathbf{1 4 7} \mathrm{g} / \mathrm{mol}$).
2.Calculate the weight in grams of solid $\mathrm{NaCl}(58.5 \mathrm{~g} / \mathrm{mol})$ required to prepare 250 mL of 0.04 M aqueous solution of Na^{+}.
3. Describe the preparation of 700 mL of $\mathbf{0 . 0 7 4 0} \mathrm{M} \mathrm{Cl}^{-}$solution from solid $\mathbf{B a C l}_{2} . \mathbf{2 H}_{2} \mathrm{O}$ ($\mathbf{2 4 4 . 3 \mathrm { g } / \mathrm { mol }) \text { . } \mathrm { f }}$

