Almustaqbal University College Medical Laboratories Techniques Department First year students Subject: General chemistry - Lecture 9 Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Buffer solutions

The buffer is a mixture of a weak acid and its conjugate base (Salt) or a weak base and its conjugate acid (Salt) that resists change in pH of a solution due to dilution or addition of small amounts of strong acid or base. Buffers are used to maintain the pH of solutions at relatively constant and predetermined level.

Calculation of the pH of different types of Buffer solutions

1. Acidic buffers

Consists of weak acid (HA) and its salt (A^{-}) .

Typical example is (acetic acid – acetate salt (CH₃COOH – CH₃COONa)

 $HA + H_2O \rightleftharpoons H_3O^+ + A^- - 1$

HA= weak acid A^- =Cojugate base(salt of the weak acid)

 $\mathsf{Ka} = \frac{[H_3 O^+][A^-]}{[HA]}$

The salt of the weak acid (e.g: NaA) is a strong electrolyte that dissociate completely to give (A^{-}) as shown in the following equation

 $NaA \rightarrow Na^{+} + A^{-}$

 $A^- + H_2O \rightleftharpoons OH^- + HA$ _____ 2

$$\mathbf{K}_{\mathrm{b}} = \frac{[OH][HA]}{[A-]} = \frac{Kw}{Ka}$$

equilibrium (1) will decrease C_{HA} by amount $[H_3O^+]$ and equilibrium (2) will increase it by amount $[OH^-]$.

 $[HA]_{equil.} = C_{HA} - [H_3O^+] + [OH^-]$

Similarly equilibrium (1) will increase $[A^-]$ by amount $[H_3O^+]$

while equilibrium O will decrease $[A^-]$ by amount $[OH^-]$ then

$$[A^{-}]_{equil.} = C_{A} + [H_{3}O^{+}] - [OH^{-}]$$

To simplify the solution some approximations are done :

1. As we have acid then [OH⁻] is omitted then:

$$[\mathrm{HA}] = \mathrm{C}_{\mathrm{HA}} - [\mathrm{H}_3\mathrm{O}^+]$$

 $[A^{-}] = C_{A^{-}} + [H_{3}O^{+}]$

2. And because we have Weak acid then $[H_3O^+]$ is omitted then:

$$[HA] \cong C_{HA}$$

 $[A^{\bar{}}] \cong C_{A_{\bar{}}}$

$$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$$

$$[H_{3}O^{+}] = K_{a} \frac{[HA]}{[A^{-}]}$$

$$[H_{3}O^{+}] = K_{a} \frac{C_{HA}}{C_{A^{-}}}$$

$$- \log [H_{3}O] = -\log K_{a} - \log \frac{C_{HA}}{C_{A^{-}}}$$

$$pH = pKa + \log \frac{C_{A}}{C_{HA}}$$

$$pH = pKa + \log \frac{C_{salt}}{C_{acid}}$$
 (Henderson equation)

Example: what is the pH of a solution that is (0.40 M) in formic acid (Ka= 1.80×10^{-4}) and (1.0 M) in sodium formate?

Solution :

(الطريقه التفصيليه) : Method 1

The pH of the solution will be effected by Ka of formic acid(HCOOH) and K_b of formate ion (HCOO⁻)

 $HCOOH + H_2O \rightleftharpoons HCOO^- + H_3O^+$ $Ka = 1.77 \times 10^{-4}$

HCOO⁻ + H₂O \rightleftharpoons HCOOH + OH⁻ $K_b = \frac{Kw}{Ka} = 5.65 \times 10^{-11}$

Since Ka of formic acid >> K_b for formate the solution will be acidic and Ka will determine the H_3O^+ conc.

 $[\text{HCOOH}] = \text{C}_{\text{HCOOH}} - [\text{H}_3\text{O}^+] + [\text{OH}^-]$

$$[HCOOH] \cong C_{HCOOH} = 0.4 \text{ M}$$

$$[HCOO^{-}] \cong C_{HCOONa} = 1.0 \text{ M}$$

$$Ka = \frac{[H_3O^+][HCOO^-]}{[HCOOH]}$$

$$[H_3O^+] = K_a \frac{[HCOOH]}{[HCOO^-]}$$

$$[H_3O^+] = 1.77 \times 10^{-4} \times \frac{0.4}{1.0} = 7.08 \times 10^{-5} \text{ M}$$

$$Check \text{ if } \frac{[H3O^+]}{[HCOOH]} \times 100 < 10 \text{ Then approximation is valid}$$

$$\frac{7.08 \times 10^{-5}}{0.4} \times 100 = 0.018 \%$$

The assumption that $[H_3O^+] \ll C_{HCOOH}$ and that $[H_3O^+] \ll C_{HCOO}$ and can be neglected and the approximation is valid:

 $pH = -\log(7.08 \text{ x} 10^{-5}) = 4.15$

Second method:

Check if $\frac{[\text{w.acid}]}{\text{Ka}} > 10 \rightarrow$ Use Henderson equation directly $\frac{[\text{w.acid}]}{\text{Ka}} = \frac{0.4}{1.77 \text{ x } 10^{-4}} = 2259 \quad (\text{i.e:} > 10)$ $pH = p\text{Ka} + \log \frac{C}{C}_{\text{HCOOH}} \quad (\text{Henderson equation})$ $p\text{Ka} = -\log(1.77 \text{ x } 10^{-4}) = 3.75$ $pH = 3.75 + \log \frac{1.0}{0.4} = 4.15$ Third method: (Apply the buffer formula directly and check)

pH= pKa + log
$$\frac{C_{NaA}}{C_{HA}}$$

pH = 3.75 + log $\frac{1.0}{0.4}$ = 4.15
[H₃O⁺] = 10^{-pH}
[H₃O⁺] = 10^{-4.15} = 7.08 x 10⁻⁵

Check if $\frac{[H30^+]}{[HCO0H]} \times 100 < 10$ Then approximation is valid $\frac{[H30^+]}{[HCO0H]} \times 100 = \frac{7.08 \times 10^{-5}}{0.4} \times 100 = 0.018 \%$ (i.e. < 10)

The approximation is valid

B) Basic Buffers

It is composed of a solution of a weak base (B) and it's conjugate acid (Salt) BH^+ e.g : NH_3 - NH_4Cl .

1) $B + H_2O \rightleftharpoons BH^+ + OH^ K_b = \frac{[OH^-][BH^+]}{[B]}$ $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$ 2) $BH^+ + H_2O \rightleftharpoons H_3O^+ + B$ $K_a = \frac{KW}{Kb} = \frac{[H_3O^+][B]}{[BH^+]}$ $NH_4^+ + H_2O \rightleftharpoons H_3O^+ + NH_3$ $NH_4Cl \rightarrow NH_4^+ + Cl^-$

[B] will decrease in equilibrium (1) by amount [OH⁻] & increase in equilibrium (2) by [H₃O⁺]

Then $[B] = C_B - [OH^-] + [H_3O^+]$

Similarly $[BH^+]$ will increase in equilibrium (1) By $[OH^-]$ and decrease in equilibrium (2) by $[H_3O^+]$.

Then $[BH^+] = C_{BH^+} + [OH^-] - [H_3O^+]$ $[B] \equiv C_B$ and $[BH^+] \equiv C_{BH^+}$ (by approximation) $K_b = \frac{[OH^-][BH^+]}{[B]}$ $[OH^-] = K_b \frac{C_B}{C_{BH^+}}$ $pOH = pK_b + \log \frac{[BH^+]}{[B]}$ $pOH = pK_b + \log \frac{C_{salt}}{C_{base}}$ (Henderson equation)

In General:

 $pH = pK_a + log \frac{C_{salt}}{C_{acid}}$ (for acidic buffer) $pOH = pK_b + log \frac{C_{salt}}{C_{base}}$ (for basic buffer)

pH = 14 - pOH

Example:

Calculate the pH of a solution that is 0.2 M in NH₃ ($K_b = 1.75 \times 10^{-5}$) and 0.3 M in NH₄Cl.

Solution:

 $NH_4Cl \rightarrow NH_4^+ + Cl^-$

$$NH_4^+ + H_2O \rightleftharpoons NH_3 + H_3O^+$$

 $\mathbf{NH}_3 + \mathbf{H}_2\mathbf{O} \rightleftharpoons \mathbf{NH}_4^+ + \mathbf{OH}^ \mathbf{K}_b = 1.75 \times 10^{-5}$

$$K_{b} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]} = 1.75 \text{ x } 10^{-5}$$
$$K_{a} = \frac{K_{w}}{K_{b}} = \frac{10^{-14}}{1.75 \text{ x } 10^{-5}} = 5.7 \text{ x } 10^{-10}$$

because $K_b >> K_a$ the solution is assumed to be basic and $[OH^-] >> [H_3O^+]$

$$[NH_4^+] = C_{NH_4Cl} - [H_3O^+] + [OH^-]$$

$$[NH_3] = C_{NH_3} + [H_3O^+] - [OH^-]$$

because $K_b >> K_a$ the solution is assumed to be basic and

 $[OH^{-}] >> [H_{3}O^{+}]$ Then cancelling $[H_{3}O^{+}]$ gives:

 $[\mathrm{NH}_4^+] = \mathrm{C}_{\mathrm{NH}4\mathrm{Cl}} + [\mathrm{OH}^-]$

$$[NH_3] = C_{NH3} - [OH^-]$$

Assume $[OH^-] \ll C_{NH_4Cl}$ and C_{NH_3} as we have a weak base then :

$$[\rm NH_{4^+}] = C_{NH_4Cl} = 0.30M$$

$$[NH_3] = C_{NH3} = 0.2 M$$

$$K_{b} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]}$$
$$[OH^{-}] = Kb \frac{[NH_{3}]}{[NH_{4}^{+}]}$$
$$[OH^{-}] = 1.75 \times 10^{-5} \times \frac{C_{NH3}}{C_{NH4Cl}}$$

$$[OH] = \frac{1.75 \times 10^{-5} \times 0.20}{0.30} = 1.17 \times 10^{-5} M$$

 $[OH^{-}] << C_{NH_4Cl} [0.30]$, $[OH^{-}] << C_{NH_3} [0.20]$

To check the validity of approximation by checking if

 $\frac{[OH-]}{[Base]} \times 100 < 10 \text{ Then approximation is valid}$ $\frac{[OH^{-}]}{[NH_{3}]} \times 100 = \frac{1.17 \times 10^{-5}}{0.2} \times 100 = 5.85 \times 10^{-3} \text{ (approximation is valid)}$ $pOH= pK_{b} + \log \frac{[Salt]}{[Base]}$ $pOH= pK_{b} + \log \frac{[NH_{4}^{+}]}{[NH_{3}]}$ $pK_{b} = -\log[1.75 \times 10^{-5}] = 4.76$ $pOH= 4.76 + \log \frac{[0.3]}{[0.2]} = 4.93$ Or pOH = - log [1.17 x 10^{-5}] = 4.93 Then pH= 14 - 4.93 = 9.07

Second method

0.20 M NH₃ and 0.30 M in NH₄Cl

Check if $\frac{[\text{w.base}]}{\text{Kb}} > 10 \rightarrow$ Use Henderson equation directly $\frac{[\text{w.base}]}{\text{Kb}} = \frac{0.2}{1.75 \times 10^{-5}} = 11428.5$ (i.e: > 10) pOH= pK_b + log $\frac{C_{NH_4Cl}}{C_{NH_2}}$ (Henderson equation)

$$pOH = 4.76 + \log \frac{0.3}{0.2} = 4.93$$
$$pH = 14 - pOH$$
$$pH = 14 - 4.93 = 9.07$$

<u>Third method</u> (Apply the buffer formula & check)

 $pOH = pK_{b} + \log \frac{Salt}{Base}$ $pOH = 4.76 + \log \frac{0.3}{0.2} = 4.93$ $[OH] = 10^{-pH}$ $[OH] = 10^{-4.93} = 1.17 \times 10^{-5} M$ Check If $\frac{[OH]}{[NH3]} \times 100\% < 10\%$ then approximation is valid and the buffer equation can be applied directly $\frac{[OH-]}{[NH_{3}]} \times 100\% = \frac{1.17 \times 10^{-5}}{0.2} \times 100\% = 5.85 \times 10^{-3} (i.e. < 10\%)$ The approximation is valid