First year students
Subject :General chemistry 1 - Lecture 4
Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Molarity of liquids:

The molarity of liquids Can be determined by applying the following formula:

Molarity of liquid $(\mathbf{M})=\frac{\operatorname{sp.gr} x\left(\frac{w}{w}\right) \% x 1000}{M w t}$
Sp.gr $=$ specific gravity $=\frac{\text { density of substance }}{\text { density of water }}$
Sp.gr $=$ specific gravity $=\frac{d_{\text {substance }}}{d_{H_{2} O}}$
$\left(\mathbf{s p . g r} \approx \mathbf{d}_{\text {substance }}\right)$

Example:

Calculate the molarity of $70.5 \% \mathrm{HNO}_{3}(\mathrm{w} / \mathrm{w})(63.0 \mathrm{~g} / \mathrm{mol})$ solution that has specific gravity of (1.420) .

Solution:

$\operatorname{Molarity}(\mathbf{M})=\frac{\operatorname{sp.gr} x\left(\frac{w}{w}\right) \% x 1000}{M w t}$
$M=\frac{1.420 \times\left(\frac{70.5}{100}\right) \times 1000}{63.0}=\frac{1.420 \times 70.5 \times 10}{63.0}=15.9 \mathrm{M}$

Example :

Calculate the Molarity of $\mathrm{NaOH}(40 \mathrm{~g} / \mathrm{mol})$ solution of $50\left(\frac{w}{w}\right) \%$ knowing that its specific gravity(sp.gr) is $\mathbf{1 . 5 2 5}$.

Solution:
$\operatorname{Molarity}(\mathrm{M})=\frac{\operatorname{sp.gr} x\left(\frac{w}{w}\right) \% x 1000}{M w t}$
Molarity $(M)=\frac{1.525 \times\left(\frac{50}{100}\right) \times 1000}{40}$
Molarity $(M)=\frac{1.525 \times 50 \times 10}{40}=19.06 \mathrm{M}$

Example:

Describe the preparation of $(100 \mathrm{~mL})$ of $(6.0 \mathrm{M}) \mathbf{H C l}$ from its concentrated solution that is $37.1 \%(\mathrm{w} / \mathrm{w}) \mathrm{HCl}(36.5 \mathrm{~g} / \mathrm{mole})$ and has specific gravity (sp.gr) of (1.181) .

Solution:

$$
\begin{aligned}
& \text { 1. نـحسب تركيز الحامض الاصلي (المركز) من القانون التالثي: } \\
& \mathbf{M}_{\mathrm{HCl}}=\frac{\operatorname{sp.gr} \boldsymbol{x}\left(\frac{w}{w}\right) \% \boldsymbol{x} 1000}{\boldsymbol{M w t}} \\
& M_{\mathrm{HCl}}=\frac{1.181 \times \frac{37.1}{100} \times 1000}{36.5}
\end{aligned}
$$

$$
M_{\mathrm{HCl}}=\frac{1.181 \times 37.1 \times 1000}{36.5 \times 100}
$$

$\mathrm{M}_{\mathrm{HCl}}=\frac{1.181 \times 37.1 \times 10}{36.5}=12.0 \mathrm{M}$
The Molarity of the concentrated acid is $\mathbf{1 2 . 0 M}$
الان نذهب الى قانون التخفيف لحساب الحجم المطلوب اخذه من الحامض المركز وتخفيفه الى الحجم المطلوب (100 مللتر في هنا المثال) وكمايلي:

No. of moles of Conc. solution = No. of moles of dil. Solution

 alsoNo. of mmoles of Conc. solution $=$ No. of mmoles of dil. Solution $\mathbf{M}_{\text {conc. }} \mathbf{V}_{\text {conc. }}=\mathbf{M}_{\text {dil. }} \mathbf{V}_{\text {dil. }}$
$12.0 \times V_{\text {conc }}=6.0 \times 100$
$\mathbf{V}_{\text {conc }}=\frac{6.0 \times 100}{12}=50 \mathrm{~mL}$.
Then $\mathbf{5 0} \mathrm{mL}$ of concentrated acid is to be diluted to 100 mL to give $\mathbf{6} \mathrm{M}$ solution

Example:

Describe the preparation of 500 mL of $3.00 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(98 \mathrm{~g} / \mathrm{mol})$ from the commercial reagent that is $\mathbf{9 3 \%} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{w} / \mathrm{w})$ and has a specific gravity of 1.830 .

Solution:

1. We have to calculte the concentration of the original conc. Solution
$\mathrm{M}_{\mathrm{H} 2 \mathrm{SO} 4}=\frac{\operatorname{sp.gr} \boldsymbol{x}\left(\frac{w}{w}\right) \% x 1000}{M w t}$
$M_{\mathrm{H} 2 \mathrm{SO} 4}=\frac{1.830 \times \frac{93}{100} \times 1000}{98}$
$M_{\text {H2SO4 }}=\frac{1.830 \times 93 \times 1000}{98 \times 100}$
$M_{\mathrm{H} 2 \mathrm{SO} 4}=\frac{1.830 \times 93 \times 10}{98}=17.37 \mathrm{M}$

لحساب الحجم المطلوب اخذه من الحامض المركز وتخفيفه الى الحجم المطلوب (500 مللتر في هذا (المثال) نطبق قانون التخفيف التالي:
$\mathbf{M}_{\text {conc. }} \mathbf{V}_{\text {conc. }}=\mathbf{M}_{\text {dil. }} \mathbf{V}_{\text {dil }}$
$17.37 \times \mathbf{V}_{\text {conc }}=\mathbf{3 . 0} \mathbf{x} 50$
$V_{\text {conc }}=\frac{3.0 \times 500}{17.37}=\mathbf{8 6 . 3 6} \mathrm{mL}$.
Then 86.36 mL of concentrated acid is to be diluted to 500 mL to give $\mathbf{3} \mathbf{~ M}$ solution.

Calculation of Normality of liquids

Normality of liquid($\mathbf{N})=\frac{\operatorname{sp.gr} x\left(\frac{w}{w}\right) \% \times 1000}{e q \cdot w t}$

Example:

Describe the preparation of 500 mL of $3.00 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}(98 \mathrm{~g} / \mathrm{mol})$ from the commercial reagent that is $96 \% \mathrm{H}_{2} \mathrm{SO}_{4}(w / w)$ and has a specific gravity of 1.840.

Solution:
$\mathrm{N}_{\mathrm{H} 2 \mathrm{SO} 4}=\frac{\operatorname{sp.gr} x\left(\frac{w}{w}\right) \% x 1000}{e q \cdot w t}$
eq.wt $=\frac{M w t}{\eta}$
For $\mathrm{H}_{2} \mathrm{SO}_{4} \boldsymbol{\eta}=\mathbf{2}$ then
eq. $\mathbf{w t}=\frac{98}{2}=49$

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{H} 2 \mathrm{SO} 4}=\frac{1.840 \times \frac{96}{100} \times 1000}{49} \\
& \mathbf{N}_{\mathrm{H} 2 \mathrm{SO} 4}=\frac{1.840 \times 96 \times 1000}{49 \times 100}
\end{aligned}
$$

$\mathrm{N}_{\mathrm{H} 2 \mathrm{SO} 4}=\frac{1.840 \times 96 \times 10}{49}=36.04 \mathrm{~N}$
The Normality of the concentrated acid is $36.04 \mathbf{N}$
لحساب الحجم المطلوب اخذه من الحامض المركز وتخفيفه الى الحجم المطلوب (500 مللتر في هذا المثّال) نطبق قانون التخفيف التّالي:
$\mathbf{N}_{\text {conc. }} \mathbf{V}_{\text {conc. }}=\mathbf{N}_{\text {dil. }} \mathbf{V}_{\text {dil }}$
$36.04 \times V_{\text {conc }}=3.0 \times 500$
$V_{\text {conc }}=\frac{3.0 \times 500}{36.04}=41.62 \mathrm{~mL}$.

Then 41.62 mL of concentrated acid is to be diluted to 500 mL to give $\mathbf{3} \mathrm{N}$ solution.

Excercise 1:
A solution of $6.42(\mathrm{w} / \mathrm{w}) \%$ of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}(241.86 \mathrm{~g} / \mathrm{mol})$ has a specific gravity of $1.059 \mathrm{~g} / \mathrm{mL}$. Calculate:
(a) the molar concentration of this solution.
(b) the mass in grams of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ contained in each liter of this solution.

Excercise 2:

A 12.5\% (w/w)aqueous solution of $\mathrm{NiCl}_{\mathbf{2}}(129.61 \mathrm{~g} / \mathrm{mol})$ has specific gravity of 1.149. Calculate:
(a) the Molarity of $\mathbf{N i C l}_{2}$ in this solution.
(b) the molar concentration of Cl^{-}in the solution.
(c) the mass in grams of NiCl_{2} contained in 500 mL of this solution.

Excercise 3:
A solution was prepared by dissolving 327.8 mg of $\mathrm{Na}_{3} \mathrm{PO}_{4}(163.9 \mathrm{~g} / \mathrm{mol})$ in sufficient water to give $\mathbf{7 5 0} \mathbf{m L}$. Calculate:
A) The Molarity and Normality of the solution.
B) the Molar concentration of $\mathbf{N a}^{+}$in the solution.

