Almustaqbal University college
Medical Laboratories Techniques Department
First year students
Subject :General chemistry 1 - Lecture 7
Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Dissociation equilibria for weak acids and bases $\left(\mathrm{K}_{\mathrm{a}} \& \mathrm{~K}_{\mathrm{b}}\right)$

Weak acids are acids that dissociate partially in water. So when they are dissolved in water, partial dissociation occurs.
for example acetic acid(weak acid), cannot completely donate all their acidic protons to the solvent(usually water). Instead, most of the acid remains undissociated, with only a small fraction present as $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$in solution.
$\mathbf{C H}_{3} \mathbf{C O O H}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \quad \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathbf{C H}_{3} \mathrm{COO}^{-}(\mathrm{aq})$
The extent of dissociation is given by the equilibrium constant:
$\mathrm{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
$\mathrm{K}\left[\mathrm{H}_{2} \mathrm{O}\right]=\mathrm{Ka}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
K_{a} is an equilibrium constant and is called acid dissociation constant
The magnitude of k_{a} provides information about the relative strength of the weak acid,

The smaller k_{a} corresponding to a weaker acid.
On the opposite, smaller pk_{a} values characterize stronger acids.

Table : The k_{a} and $p k_{a}$ values for a number of common weak acids

Compound	k_{a}	pk_{a}
Hydrocyanic acid (HCN)	4.93×10^{-10}	9.31 weakest acid
Acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$	1.76×10^{-5}	4.75
Benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$	6.46×10^{-5}	4.19
Formic acid $(\mathbf{H C O O H})$	1.77×10^{-4}	3.75
Salicylic acid $\left(\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{COOH}\right)$	1.05×10^{-3}	2.98
Chloroacetic acid $\left(\mathrm{ClCH}_{\mathbf{2}} \mathrm{CO}_{2} \mathrm{H}\right)$	1.4×10^{-3}	2.85 strongest acid

Conversions

1. to convert K_{a} to pK_{a}

$$
p K_{a}=-\log K_{a}
$$

Example:

convert ($\mathrm{K}_{\mathrm{a}}=4.93 \times 10^{-10}$) to pK_{a}
$\mathrm{pK}_{\mathrm{b}}=-\log 4.93 \times 10^{-10}=9.31$
2. to convert pK_{a} to K_{a}

$$
\mathrm{K}_{\mathrm{a}}=10^{-\mathrm{pKa}}
$$

Example: convert $\mathrm{pK}_{\mathrm{a}}=4.19$ to K_{a}

$$
K_{a}=10^{-4.19}=6.46 \times 10^{-5}
$$

Exercise (Home work) : Arrange the following weak acids [Acetic acid $\left(\mathrm{pK}_{\mathrm{a}}=4.75\right)$, formic $\operatorname{acid}\left(\mathrm{pK}_{\mathrm{a}}=3.75\right)$, and Chloroacetic acid $\left(\mathrm{ka}=1.4 \times 10^{-3}\right)$] in the order of increasing their acid strength.

Calculations of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] concentration for weak acid [HA]:
$\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$
$\mathrm{Ka}=\frac{[\mathrm{H} 30+\mid[A-]}{[H A]}$
As $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{A}^{-}\right] \quad$ from above equation(stiochiometry)

$$
\mathbf{K a}=\frac{[H 3 O+]^{2}}{[H A]} \quad(\text { by substitution })
$$

When dissociation is very small(weak acid), Then:
$[H A]_{\text {eq }}=[H A]_{\text {original }}-\left[\mathbf{H}_{3} \mathbf{O}^{+}\right] \approx \mathbf{C} \quad$ where $\mathbf{C}=[\mathrm{HA}]_{\text {original }}$

Then, $\quad \mathrm{K}_{\mathrm{a}}=\frac{[\mathrm{H} 30+]^{2}}{C}$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{K a C}
$$

Example :

Calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$concentration of $\mathbf{0 . 1 2 0 M}$ aqueous solution of Nitrous acid $\mathbf{H N O}_{2},\left(\mathrm{Ka}=5.1 \times 10^{-4}\right)$.
$\mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{2}{ }^{-}$
$0.12-x \quad x \quad x \quad$ (at equilibrium)
$\mathrm{Ka}=5.1 \times 10^{-4}=\frac{[\mathrm{H3O}+\mathrm{H}[\mathrm{NO} 2-]}{[\mathrm{HNO} \mathrm{O}]}$
For a very weak acid $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{NO}_{2}{ }^{-}\right]=\mathrm{x}$
$\left[\mathrm{HNO}_{2}\right]_{\text {eq. }}=0.120-\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \approx \mathbf{0 . 1 2 0}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{K a C}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{5.1 \times 10^{-4} \times 0.12}=7.82 \times 10^{-3}$
$\mathrm{pH}=-\log \left(7.82 \times 10^{-3}\right)=2.11$
**relative error $\%=\frac{7.82 \times 10^{-3}}{0.12} \times 100=6.5 \%$ (less than 10%) Then approximation is valid .

Weak bases are bases that partially dissociate in water and are characterized by base dissociation constant (k_{b}). For example the base dissociation constant (k_{b}) for the conjugate base acetate ion is given by:

$$
\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{COOH}
$$

$\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}=5.71 \times 10^{-10}$
The magnitude of (k_{b}) provides information about the relative strength of the weak base,

The smaller \mathbf{k}_{b} corresponding to a weaker base.
On the opposite, smaller pk_{b} values characterize stronger base.
Table : The $\mathbf{k}_{\mathbf{b}}$ and $\mathbf{p} \mathbf{k}_{\mathbf{b}}$ values for a number of common weak bases.

Compound	$\mathbf{k}_{\text {b }}$	$\mathbf{p k}_{\text {b }}$
Acetamide ($\mathrm{CH}_{3} \mathrm{CONH}_{2}$)	2.5×10^{-13}	12.60 weakest Base
Glycine($\mathbf{H}_{2} \mathrm{NCH}_{2} \mathbf{C O O H}$)	2.24×10^{-12}	11.65
Aniline $\mathbf{C}_{6} \mathbf{H}_{5} \mathrm{NH}_{\mathbf{2}}$	7.4×10^{-10}	9.13
Pyridine $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	1.7×10^{-9}	8.77
morphine	$7.5 \times 10-7$	6.12
Codeine($\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}$)	$1.6 \times 10-6$	5.79
Ephedrine($\mathrm{C}_{10} \mathrm{H}_{15} \mathbf{O N}$)	1.32x10-4	3.88
Methylamine $\left(\mathbf{C H}_{3} \mathbf{N H}_{2}\right)$	4.38×10^{-4}	3.36
Dimethylamine $\left(\mathrm{CH}_{3}\right)_{2} \mathbf{N H}$	5.4×10^{-4}	3.26 strongest Base

Conversions

1. To convert K_{b} to $\mathbf{p K}{ }_{b}$
$\mathbf{p} K_{b}=-\log \mathbf{K}_{b}$
Example:
convert ($\mathrm{K}_{\mathrm{b}}=2.5 \times 10^{-13}$) to pK_{b}
Answer:
$\mathrm{pK}_{\mathrm{b}}=-\log 2.5 \times 10^{-13}=12.60$
2. To convert $\mathbf{p K}_{\mathbf{b}}$ to \mathbf{K}_{b}

$$
K_{b}=10^{-p K b}
$$

Example:
Convert $\mathbf{p K}_{\mathrm{b}}=5.79$ to \mathbf{K}_{b}
$K_{b}=10^{-5.79}=1.62 \times 10^{-6}$
Exercise (Home work) : Arrange the following weak bases Glycine $\left(\mathrm{pK}_{\mathrm{b}}=11.65\right)$, Ephedrine $\left(\mathrm{pK}_{\mathrm{b}}=3.88\right)$, Pyridine $\left(\mathrm{kb}=1.7 \times 10^{-9}\right)$ and Dimethylamine $\left(k b=5.4 \times 10^{-4}\right)$ in the order of decreasing their base strength.

For weak base :
$\mathbf{N H}_{3}+\mathbf{H}_{2} \mathrm{O} \quad \rightleftharpoons \quad \mathrm{NH}_{4}{ }^{+}+\mathbf{O H}^{-}$
$\mathrm{C}_{\mathrm{b}} \quad 0 \quad 0 \quad$ (at the beginning)
$\mathbf{C}_{b^{-}} \mathbf{x} \quad \mathbf{x} \quad$ (at equilibrium)
$\mathbf{K}_{\mathbf{b}}=\frac{[\mathrm{NH} 4+][\mathrm{OH}-]}{[\mathrm{NH} 3]}$
When dissociation is very weak(x is very small): $\left[\mathrm{NH}_{3}\right]=\mathbf{C b}-\mathrm{x} \approx \mathbf{C b}$
Since $\left[\mathrm{OH}^{-}\right]=\left[\mathrm{NH}_{4}{ }^{+}\right] \quad$ (from stiochiometry)

Therefore, $K_{b}=\frac{[\mathrm{OH}-]^{2}}{[\mathrm{NH} 3]}=\frac{[\mathrm{OH}-]^{2}}{\mathrm{Cb}} \quad$ (by substitution)
$\mathbf{K}_{\mathrm{b}}=\frac{[\mathrm{OH}-]^{2}}{\mathrm{Cb}}$
$\left[\mathrm{OH}^{-}\right]=\sqrt{K_{b} C_{b}}$

Example :

Calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$concentration of 0.2 M aqueous NH_{3} solution, $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$.
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-} \quad\left(\begin{array}{l}\text { (لايضاح) }\end{array}\right.$
$0.2-\mathbf{x} \quad \mathbf{x} \quad$ (at equilibrium)
$\mathbf{K}_{\mathbf{b}}=\frac{[\mathrm{NH} 4+][\mathrm{OH}-]}{[\mathrm{NH} 3]}$
For very weak base $\left[\mathrm{OH}^{-}\right]=\left[\mathrm{NH}_{4}{ }^{+}\right]=\mathbf{x}$
$\left[\mathrm{NH}_{3}\right]=0.2-[\mathrm{x}]=0.2 \approx \mathrm{C}_{\mathrm{b}}$
$\left[\mathrm{NH}_{3}\right]_{\text {eq. }}=\mathrm{C}_{\mathrm{b}}$
$\mathrm{Kb}=1.8 \times 10^{-5}=\frac{[\mathrm{OH}-]^{2}}{0.2}$
$\left[\mathrm{OH}^{-}\right]=\sqrt{K_{b} C_{b}}$
$\left[\mathrm{OH}^{-}\right]=\sqrt{1.8 \times 10^{-5} \times 0.2}=\sqrt{3.6 \times 10^{-6}}$
$\left[\mathrm{OH}^{-}\right]=1.89 \times 10^{-3}$
**Relative error $\%=\frac{1.89 \times 10^{-3}}{0.2} \times 100 \%=0.95 \%$ (approximation is
valid) للتحقق من صحه الثقريب
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{\mathrm{Kw}}{[\mathrm{OH}-]} \quad=\frac{10^{-14}}{1.89 \times 10^{-3}}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.29 \times 10^{-12}$
$\mathrm{pH}=-\log \left(5.29 \times 10^{-12}\right)=11.27$
Relationship between dissociation constants for Base-conjugate acid pair:
e.g : $\mathbf{N H}_{3}-\mathbf{N H}_{4}{ }^{+}$
$\mathbf{N H}_{3}+\mathbf{H}_{2} \mathrm{O} \rightleftharpoons \mathbf{N H}_{4}{ }^{+}+\mathbf{O H}^{-}$
$\mathbf{K}_{\mathbf{b}}=\frac{[\mathrm{NH} 4+][\mathrm{OH}-]}{[\mathrm{NH} 3]}$
$\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathbf{K}_{\mathbf{a}}=\frac{[\mathrm{NH} 3][\mathrm{H} 3 \mathrm{O}+\mathrm{]}}{[\mathrm{NH} 4+\mathrm{]}}$
Multiplication of equation (1) with (2) gives :
$\mathbf{K}_{\mathbf{b}} \mathbf{X} \mathbf{K}_{\mathbf{a}}=\frac{[\mathrm{NH} 4+][\mathrm{OH}-]}{[\mathrm{NH} 3]} \times \frac{[\mathrm{NH} 3][\mathrm{H3O+}]}{[\mathrm{NH} 4+]}$
$\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
but $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{w}}$
Therefore,

$$
\mathbf{K}_{\mathrm{a}} \times \mathbf{K}_{\mathrm{b}}=\mathbf{K}_{\mathrm{w}}
$$

Exercise : prove that for the weak acid $\mathrm{CH}_{3} \mathbf{C O O H}$ and its conjugate base $\mathbf{C H}_{3} \mathrm{COO}^{-}$then ($\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}$).

Hint:
$\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \quad \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{CH}_{3} \mathrm{COO}_{(\mathrm{aq})}^{-}$
$\mathrm{Ka}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
$\mathbf{C H}_{3} \mathrm{COO}^{-}+\mathbf{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OH}^{-}+\mathbf{C H}_{3} \mathbf{C O O H}$
$\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}$

Calculations of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], \mathrm{pH},\left[\mathrm{OH}^{-}\right]$and pOH for strong Acids and Bases
Strong acids:
Are acids that completely dissociate in water. e.g: $\mathbf{H N O}_{3}$,as astrong acid almost completely gives its protons to the solvent molecules(water):

$$
\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \rightarrow \quad \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \quad+\mathrm{NO}_{3}^{-}(\mathrm{aq})
$$

0.1 M
0.1 M
0.1 M

pH of a strong acid

When a solution of $0.1 \mathrm{M} \mathrm{HNO}_{3}$ dissolves in water it dissociates completely to give $0.1 \mathrm{M}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $0.1 \mathrm{M}\left[\mathrm{NO}_{3}{ }^{-}\right]$.

For strong acids HNO_{3} Then $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{C}$ where C is the initial concentration of the strong acid

The hydronium ion $\mathrm{H}_{3} \mathrm{O}^{+}$is the acidic species in solution, and its concentration $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$determines the acidity of the resulting solution

Example
Calculate the pH of a 0.1 M solution of $\mathbf{H C l}$.
HCl is a strong acid, It dissociates completely in water to produce 0.1 M of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$]and 0.1 M of $\left[\mathrm{Cl}^{-}\right]$
$\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
$0.1 \mathrm{M} \quad 0.1 \mathrm{M}$

Since the concentration of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is given as:
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{C}=[\mathrm{HCl}]=0.1 \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log (0.1)=1$

Example:

Calculate the pH and pOH of the following strong acid solutions:
(a) $1.3 \times 10^{-2} \mathrm{M} \mathrm{HClO}_{4}$,
(b) $1.3 \times 10^{-3} \mathrm{M} \mathrm{HCl}$,
(c) $1.3 \times 10^{-4} \mathrm{M} \mathrm{HNO}_{3}$.

Answer:
a) $\mathrm{HClO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{ClO}_{4}^{-}$

$$
\begin{aligned}
& 1.3 \times 10^{-2} \mathrm{M} \quad 1.3 \times 10^{-2} \mathrm{M} \\
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log 1.3 \times 10^{-2}=1.89 \\
& \mathrm{pOH}=14-1.89=12.11
\end{aligned}
$$

(b) $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$

$$
1.3 \times 10^{-3} \mathrm{M} \quad 1.3 \times 10^{-3} \mathrm{M}
$$

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log 1.3 \times 10^{-3}=2.89
$$

$$
\mathrm{pOH}=14-2.89=11.11
$$

c) $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}{ }^{-}$

$$
\begin{aligned}
& 1.3 \times 10^{-4} \mathrm{M} \quad 1.3 \times 10^{-4} \mathrm{M} \\
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left[1.3 \times 10^{-4}\right]=3.89 \\
& \mathrm{pOH}=14-3.89=10.11
\end{aligned}
$$

Excercise:
Calculate the $\mathbf{p H}$ of the following strong acid solutions:
(a) 0.1 M HCl
(b) $0.1 \mathrm{M} \mathrm{H}_{\mathbf{2}} \mathbf{S O}_{4}$
(c) $0.1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$.

Hint:
$\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \quad \rightarrow \quad 2 \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{4}{ }^{2-}$
$\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{PO}_{4}{ }^{3-}$

Example:
Calculate the hydrogen ion concentration $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for the solutions with the following pH values: (a) 3.47, (b) 0.20 , (c) 8.60 .

Answer:
$\mathbf{p H}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\mathrm{pH}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{PH}}$
(a) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{PH}}=100^{-3.47}=3.4 \times 10^{-4} \mathrm{M}$.
(b) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{PH}}=10^{-0.2}=0.63 \mathrm{M}$.
(c) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{PH}}=10^{-8.6}=2.5 \times 10^{-9} \mathrm{M}$.

pH of a strong Base

Strong bases:

Are bases that completely dissociate in water. e.g: $\mathbf{N a O H}$, as astrong base almost completely dissociates to:

$\underset{\mathrm{NaOH}(\mathrm{aq})}{\mathbf{N . 1 ~ M}}$	\rightarrow	$\mathrm{Na}^{+}(\mathrm{aq})$
0.1 M		

When a solution of 0.1 M NaOH dissolves in water it dissociates completely to give $0.1 \mathrm{M}\left[\mathrm{Na}^{+}\right]$and $0.1 \mathrm{M}\left[\mathrm{OH}^{-}\right]$.

For strong bases $\left[\mathrm{OH}^{-}\right]=\mathrm{C}$
where C is the initial concentration of the strong base
The hydroxide ion OH^{-}is the basic species in solution, and its concentration $\left[\mathrm{OH}^{-}\right]$determines the basicity of the resulting solution

Example:
Calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in 0.2 M aqueous solution of NaOH .
$\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$
$\begin{array}{lll}0.2 & 0.2 & 0.2\end{array}$
$2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \quad$ (توضيح)
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathbf{K w}$
$\left[\mathrm{OH}^{-}\right]_{\text {total }}=\left[\mathrm{OH}^{-}\right]_{\mathrm{NaOH}}+\left[\mathrm{OH}^{-}\right]_{\text {water }} \approx\left[\mathrm{OH}^{-}\right]_{\mathrm{NaOH}}=0.2$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{\mathrm{Kw}}{\left[\mathrm{OH}^{-}\right]}=\frac{1 \times 10^{-14}}{0.2}=5 \times 10^{-14} \mathrm{M}
$$

Example:

Calculate the pH and pOH of the following strong base solutions:
(a) 0.05 M NaOH ,
(b) $0.05 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$,
(c) $0.05 \mathrm{M} \mathrm{La}(\mathrm{OH})_{3}$.

Answer:
a) $\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$
0.05 M
0.05 M
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log 5 \times 10^{-2}=1.3$
$\mathrm{pH}=14-1.3=12.7$
b) $\mathbf{C a}(\mathbf{O H})_{2} \quad \rightarrow \quad \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}$

$$
0.05 \mathrm{M} \quad 2(0.05)=0.1 \mathrm{M}
$$

$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log 0.1=1.0$
$\mathrm{pH}=14-1.0=13.0$
c) $\mathbf{L a}(\mathbf{O H})_{3} \quad \rightarrow \quad \mathrm{La}^{3+}+3 \mathrm{OH}^{-}$
0.05 M

$$
3(0.05)=0.15 \mathrm{M}
$$

$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log 0.15=0.82$
$\mathrm{pH}=14-0.82=13.18$

Example :

Calculate the pH of a solution obtained by mixing 10 mL of the strong acid HCl solution ($\mathrm{pH}=3.0$) with the same volume of the strong base KOH solution ($\mathbf{p H}=12.0$) .

Answer:

$$
\left[\mathbf{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{PH}}
$$

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for HCl solution $=1.0 \times 10^{-3} \mathrm{M}$. [$\mathrm{H}_{3} \mathrm{O}^{+}$] for KOH solution $=1.0 \times 10^{-12} \mathrm{M}$.

As $\left[\mathrm{OH}^{-}\right]=\frac{K_{w}}{\left[H_{3} O^{+}\right]}$then
$\left[\mathrm{OH}^{-}\right]$for KOH solution $=\frac{1.0 \times 10^{-14}}{1.0 \times 10^{-12}}=1.0 \times 10^{-2} \mathrm{M}$
mmole $\mathbf{H C l}=$ Molarity x volume (mL)
mmol $\mathrm{HCl}=1.0 \times 10^{-3} \mathrm{M} \times 10 \mathrm{~mL}=1.0 \times 10^{-2}=0.01 \mathrm{mmol}$
mmol $\mathrm{KOH}=1.0 \times 10^{-2} \mathrm{Mx10mL}=0.1 \mathrm{mmol}$
$\mathrm{HCl}+\mathrm{KOH} \rightarrow \quad \mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}$
$0.01 \mathbf{m m o l} \quad 0.1 \mathbf{m m o l}$

Excess of $\mathrm{KOH}=\mathbf{m m o l e} \mathrm{KOH}$ - mmole $\mathbf{H C l}$
Excess of $\mathrm{KOH}=(0.1-0.01) \mathrm{mmol}=0.09 \mathrm{mmole}$
$\left[\mathrm{OH}^{-}\right]=\frac{0.09 \mathrm{mmol}}{(10+10) \mathrm{mL}}=4.5 \times 10^{-3} \mathrm{M}$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(4.5 \times 10^{-3}\right)=2.35$
$\mathrm{pH}=14-2.35=11.65$

Example:
Calculate the pH and pOH of a solution obtained by mixing 100 mL of each of $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and 0.30 M NaOH .

Answer:
No. mmoles $=$ Molarity \mathbf{x} Volume (mL)
$\mathrm{mmol} \mathrm{H}_{2} \mathrm{SO}_{4}=\mathbf{0 . 1 0} \mathrm{M} \times 100 \mathrm{~mL}=10 \mathrm{mmol}$
$\mathrm{mmol} \mathrm{NaOH}=0.3 \mathrm{M} \times 100 \mathrm{~mL}=\mathbf{3 0} \mathrm{mmol}$
$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathbf{~ N a O H} \quad \rightarrow \quad \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
1 mole 2 mole
$10 \mathrm{mmol} \quad 30 \mathrm{mmol}$
$\mathbf{m m o l} \mathrm{NaOH}$ reacted $=2\left(\operatorname{mmoles} \mathrm{H}_{2} \mathrm{SO}_{4}\right)=2 x \mathbf{1 0}=\mathbf{2 0} \mathbf{m m o l}$
Excess of $\mathbf{N a O H}=\mathbf{m m o l e} \mathbf{N a O H}($ original $)-\mathbf{m m o l e} \mathbf{N a O H}$ (reacted $)$
mmol $\mathbf{N a O H}$ excess $=\mathbf{3 0 - 2 0}=\mathbf{1 0}$ mmole
Molarity $(M)=\frac{\text { moles }}{V_{m L}}=\frac{10}{(100+100)}=\frac{10}{200}=0.05$
$\therefore\left[\mathrm{OH}^{-}\right]=0.05 \mathrm{M}$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log 0.05=1.3$
$\mathrm{pH}=14-1.3=12.70$

