ALMUSTAQBAL UNIVERSITY COLLEGE

Medical Labs Techniques Department
Stage : First year students
Subject :General chemistry 1 - Lecture 3
Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Normality (N)

represents the number of milli equivalents of solute contained in one milliter of solution or number of equivalents contained in one liter.
e.g: 0.2 N HCl contains 0.2 milli equivalent (meq) of HCl in each mL of solution or (0.2) equivalents (eq) in liter solution .
$\mathrm{N}=\frac{\text { number of equivalents(solute) }}{V L(\text { solution })}$
Number of equivalents $(\mathrm{eq})=\frac{w t(g m)}{e q \cdot w t(g m)}$

$$
\begin{aligned}
& \mathrm{N}=\frac{\frac{w t}{\text { eq.wt }}}{V(\text { liter })} \\
& \mathbf{N}=\frac{\frac{w t}{e q . w t}}{\frac{V(m L)}{1000}}
\end{aligned}
$$

$\mathrm{N}=\frac{w t \times 1000}{e q . w t \times V(m L)}$
Exercise: proof that $\mathrm{N}=\frac{w t \times 1000}{\text { eq.wt } \times V(m L)}$

الجو اب : نكتب الاشتقاق (الخطو ات الاربعه اعلاه)
Eq.wt $=\frac{M w t}{\eta}$
$\mathrm{N}=\frac{\omega t \times 1000}{\frac{M \omega t}{\eta} \times V(m L)}$
$\mathbf{N}=\frac{w t \times 1000}{\frac{M w t x V(m L)}{\eta}}$
$\mathbf{N}=\left(\frac{w t \times 1000}{M w t \times V(m L)}\right) \boldsymbol{\eta}$

$$
N=\eta M \text {, or } M=N / \eta
$$

e.g: Normality(N) of $1 \mathrm{M} \mathrm{KCl}=1 \times 1=1 \mathrm{~N} \mathrm{KCl}$,

Normality (\mathbf{N}) of $1 \mathrm{M} \mathrm{HCl}=1 \times 1=1 \mathbf{N H C l}$,
Normality (N) of $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}=\mathbf{2 x 1}=2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$,
Normality (N) of $1 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}=\mathbf{2 x 1}=\mathbf{2 N} \mathrm{Na}_{2} \mathrm{CO}_{3}$

I. Equivalent mass in neutralization reaction:

A) Equivalent mass of acids (Eq):-

Is the mass that either contribute or reacts with one mole of hydrogen ion in the reaction.
$\mathrm{Eq}=\frac{M w t}{\text { number of } H}$

1. Mono protic acid e.g: $\left(\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{CH}_{3} \mathrm{COOH}\right) \quad \eta=1$
$\mathrm{Eq}=\frac{M w t}{1}$
$\mathrm{Eq}=\frac{36.5}{1}=36.5$ for HCl ,
$E q=\frac{63}{1}=63$ for HNO_{3}
2. Diprotic acid e.g: $\left(\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{SO}_{3}\right) \eta=2$
$\mathrm{Eq}=\frac{M w t}{2}=\frac{98}{2}=49 \quad$ for $\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{Eq}=\frac{34}{2}=17$ for $\mathrm{H}_{2} \mathrm{~S}$
$\mathrm{Eq}=\frac{82}{2}=41$ for $\mathrm{H}_{2} \mathrm{SO}_{3}$

B) Equivalent mass of Bases:

Is the mass that either contribute or reacts with one mole of OH in the reaction.
$\mathrm{Eq}=\frac{\mathrm{Mwt}}{\text { number of } \mathrm{OH}}$

1. Mono hydroxy base e.g: $(\eta=1)$

e.g: NaOH

Eq. $=\frac{M w t}{1}=\frac{40}{1}=40$
2. Di hydroxy base $(\eta=2)$

Eq. $=\frac{M w t}{1}=\frac{56}{1}=56$
e.g: $\mathrm{Ca}(\mathrm{OH})_{2}$

Eq. $=\frac{M w t}{2}=\frac{74}{2}=37$
Eq. $=\frac{M w t}{2}=\frac{99.4}{2}=49.7$
$\mathrm{Zn}(\mathrm{OH})_{2}$
Eq. $=\frac{M w t}{2}=\frac{171.35}{2}=85.67$

II. Equivalent mass in (oxidation - reduction) reaction (Redox):

The equivalent mass of a participant in an (oxidation-reduction) reaction is that mass which directly produce or consume one mole of electron.
$\mathbf{E q}=\frac{M w t}{\eta}$
$\eta=$ change in oxidation state number
$\eta=$ numbers of electrons participate in oxidation - reduction processes (Redox)

Example :

$2 \mathrm{KMnO}_{4}+10 \mathrm{FeSO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{MnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}+8 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Mn}^{7+} \mathrm{O}_{4}^{-}+10 \mathrm{Fe}^{2+}+\mathbf{8} \mathrm{H}^{+} \rightleftharpoons \mathbf{1 0 \mathrm { Fe } ^ { 3 + }}+\mathrm{Mn}^{2+} \mathrm{SO}_{4} \quad$ (acidic medium)
$\mathbf{M n}^{7+} \quad \rightarrow \quad \mathbf{M n}^{2+}(5$ e gain - reduction $)$
$\mathrm{Fe}^{2+} \quad \rightarrow \quad \mathrm{Fe}^{3+}(1 \mathrm{e}$ loss - oxidation $)$

Eq. of $\mathrm{KMnO}_{4}=\frac{M w t}{5}=\frac{157.9}{5}=31.6$
III. Equivalent mass for salts:
$\mathrm{Eq}=\frac{M w t}{\eta}$
$(\eta)=\Sigma$ [no. of cations x its valency(cation charge)]
e.g: $\mathrm{BaSO}_{4} \quad\left(\mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{\mathbf{2 -}} \leftrightarrow \mathrm{BaSO}_{4}\right)$
$\eta=\mathrm{Ba}^{2+}(1) \times(2+)=2$
Mwt for $\mathrm{BaSO}_{4}=233 \mathrm{~g} / \mathrm{mol}$

$$
\text { Eq. }=\frac{M w t}{2}=\frac{233}{2}=116.5
$$

Example

Find the Normality of the solution containing $5.300 \mathrm{~g} / \mathrm{L} \mathrm{of}^{2} \mathrm{Na}_{2} \mathrm{CO}_{3}(106 \mathrm{~g} / \mathrm{mol})$.
Solution:
To find η for $\mathrm{Na}_{2} \mathrm{CO}_{3}(\boldsymbol{\eta})=\boldsymbol{\Sigma}$ [no. of cations \mathbf{x} its valency(cation charge)]
No. of cations $=2 \mathrm{Na}+$ while the cation charge for $\mathrm{Na}^{+}=1$,
$\operatorname{Then}(\eta)=2 \times 1=2$
Eq. of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{M w t}{2}=\frac{106}{2}=53.0 \mathrm{gm}$
Normality $(\mathrm{N})=\frac{w t}{E q \cdot x V L}$
Normality $=\frac{5.3 \mathrm{gm}}{53.0 \times 1 \mathrm{~L}}=0.1$

e.g: $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}(258 \mathrm{~g} / \mathrm{mol})$

$(\eta)=\Sigma$ [no. of cations x its valency(cation charge)]
no. of cations $=1 \mathrm{~K}^{+}+1 \mathrm{Al}^{3+}$
$\eta=K^{+}(1) \times(1+)+A l^{3+}(1) \times(3+)=4$
Eq. $=\frac{M . w t}{4}=\frac{258}{4}=64.5$
e.g: $\mathrm{AgNO}_{3} \quad\left(\eta=\mathrm{Ag}^{+}(1) \times 1=1\right)$
e.g: $\mathrm{Na}_{2} \mathrm{CO}_{3} \quad\left(\eta=\mathrm{Na}^{+}(2) \times 1=2\right)$

Eq. $=\frac{M w t}{1}=\frac{170}{1}=170$
Eq. $=\frac{M w t}{2}=\frac{106}{2}=53$
e.g: $\mathbf{L a}\left(\mathrm{IO}_{3}\right)_{3} \quad\left(\boldsymbol{\eta}=\mathbf{L a}^{3+}(1) \times 3=3\right)$

Eq. $=\frac{M w t}{3}=\frac{663.6}{3}=221.1$

Molality $(\mathbf{m}):$ The number of moles of solute per kilogram of solvent.

$$
\begin{aligned}
& \text { انتبه هنا اسنخدم وزن المذيب وليس المحلول } \\
& \text { (المو لالبه ==عدد مو لات المذاب في الكيلو غرام من المذيب) } \\
& \text { Solute }=\text { و المذاب } \quad \text { و المحلول } \text { Solution }=\text { المذيب }
\end{aligned}
$$

Molality $(\mathrm{m})=\frac{\text { number of moles }(\text { solute })}{\text { Kg of solvent }\left(\frac{g m}{1000}\right)}=\frac{\text { number of moles }(\text { solute }) x 1000}{\text { mass of solvent }(\text { gm })}$

Example

Determine the molality of a solution prepared by dissolving 75.0 gm of solid $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{\mathbf{2}}(\mathbf{2 6 1 . 3 2} \mathbf{g} / \mathrm{mol})$ into 374.00 gm of water.

Solution:

$\operatorname{Molality}(\mathrm{m})=\frac{\text { number of moles }(\text { solute }) x 1000}{\text { mass of solvent }(\mathrm{gm})}$
No of moles(solute) $=\frac{w t}{M . w t}=\frac{75.0 \mathrm{gm}}{261.32 \mathrm{gm} / \mathrm{mol}}=0.287 \mathrm{moles}$
Molality $(\mathrm{m})=\frac{\text { number of moles }(\text { solute }) \times 1000}{\text { mass of solvent }(\mathrm{gm})}=\frac{0.287 \mathrm{~mol} \times 1000}{374 \mathrm{gm}}$

Molality $(\mathrm{m})=\mathbf{0 . 7 6 9}$

Mole fraction:

The number of moles of one component relative to the total number of moles of all components in the solution.

Mole fraction of $\operatorname{solute}\left(x_{1}\right)=\frac{\text { no.of moles of solute }\left(n_{1}\right)}{\operatorname{mole} \text { of solute }\left(n_{1}\right)+\text { moles of solvent }\left(n_{2}\right)}$
Mole fraction of $\operatorname{solvent}\left(x_{2}\right)=\frac{\text { moles of solvent }\left(n_{2}\right)}{\text { moles of solute }\left(n_{1}\right)+\text { moles of solvent }\left(n_{2}\right)}$

1 = مجموع الكسور الموليه فْي المحلول
$X_{1}+X_{2}=1$ Then $X_{1}=1-X_{2}$ and $X_{2}=1-X_{1}$

Example: calculate the mole fraction for each of solute and solvent in a solution if the solute is (2 mole) and the solvent in (3 mole) .

Solution:

$X_{1}=\frac{n_{1}}{n_{1}+n_{2}}=\frac{2}{2+3}=\frac{2}{5}=0.4$
$\mathrm{X}_{2}=\frac{n_{2}}{n_{1}+n_{2}}=\frac{3}{2+3}=\frac{3}{5}=0.6$
$\mathrm{X}_{1}+\mathrm{X}_{2}=\mathbf{0 . 4}+\mathbf{0 . 6}=\mathbf{1}$
For 3 components mixture we have X_{1}, X_{2}, and X_{3} Then:
$\mathrm{X} 1=\frac{n 1}{n 1+n 2+n 3} \quad \mathrm{X} 2=\frac{n 2}{n 1+n 2+n 3} \quad \mathrm{X} 3=\frac{n 3}{n 1+n 2+n 3}$

Example: Calculate the mole fraction for each component in amixture contains 1 mole of $A, 2$ moles of B and 3 moles of C.

Total no of moles $n_{T}=$ moles of $A\left(n_{A}\right)+$ moles of $B\left(n_{B}\right)+$ moles of $C\left(n_{C}\right)$
$\mathbf{n}_{\mathrm{T}}=\mathbf{n}_{\mathrm{A}}+\mathbf{n}_{\mathrm{B}}+\mathbf{n}_{\mathrm{C}}$
$\mathrm{n}_{\mathrm{T}}=\mathbf{1 + 2 + 3 = 6}$ moles
$\mathrm{X}_{\mathrm{A}}=\frac{n_{A}}{n_{T}}=\frac{1}{6}=0.17$
$\mathrm{X}_{\mathrm{B}}=\frac{n_{B}}{n_{T}}=\frac{2}{6}=0.33$
$\mathrm{X}_{\mathrm{C}}=\frac{n_{C}}{n_{T}}=\frac{3}{6}=0.5$
$X_{T}=X_{A}+X_{B}+X_{C}$
$\mathrm{X}_{\mathrm{T}}=0.17+0.33+0.5=1$

