Refrigeration and Air conditioning Engineering. $3^{\text {rd }}$ year - refrigeration and Air conditioning Course

M.Sc. Zahraa F. Hussain

COOLING LOAD ESTIMATION

Lecture -4

M.Sc. Zahraa F. Hussain

Example 2.

A single-family detached house shown in Fig. 1a is located in Iraq- Baghdad. The Wall is built from of 13 mm cement plaster, 20 cm common brick and 10 mm gypsum plaster. While the Partition is built from 10 cm common brick and 10 mm gypsum plaster on both sides. The Roof is built from outside to inside from 10 mm cement tail, 130 mm sand, 10 mm Expanded polyurethane, Asphalt shingles, 150 mm concrete and 20 mm gypsum. The floor consist from outer to inner from carp, cement tile of 25 mm thick., heavy concert of 15 cm thick. Ceiling height is 3 m Fenestration. Clear single glass, 3 mm thick. Assume closed, medium-color well fitted, aluminum frame. Doors made of wood of 25 mm thickness. Occupancy. Four persons, based on two for the master bedroom and one for each additional bedroom. Assign to the living room. Llights. Assume 480 W for the kitchen, and 480 W for living room, assign 50% to bed room $1,25 \%$ for bedrooms 2 and 3 . Appliances : there is one TV,PC laptop, laser printer, and Coffee brewer in living room, The construction of the house is considered medium. Find the sensible, latent, and total cooling load; size the cooling unit; and compute the air quantity for each room.

Solution:

The cooling load must be made on a room-by-room basis to determine the proper distribution of air. The calculations follow the procedure outlined in the section on Load Components. The using of thermal resistance R is not like the use of the thermal conductivity k, since the thermal resistance depends on a given material thickness, while the thermal conductivity does not depends on the material thickness, Let takes an example, If we have two thicknesses of Stucco, the first one is $\mathbf{2 5} \mathbf{~ m m}$ and the second is $\mathbf{1 0} \mathbf{~ m m}$, find the heat transfer coefficient and the thermal resistance for both thicknesses.

Table 19 Properties of building materials

Description	$\begin{gathered} L \\ m m \end{gathered}$	$\begin{gathered} K \\ W / m K \end{gathered}$	$\underset{ }{\mathrm{Pg} / \mathrm{m}^{3}}$	$\begin{gathered} R \\ m^{2} K / W \end{gathered}$	$\begin{gathered} \text { Mass } \\ \mathrm{kg} / \mathrm{m}^{2} \end{gathered}$
Outside surface resistance, Summer	---	0.000	\cdots	0.059	0.00
Outside surface resistance, winter	---	0.000	--	0.041	
Stucco	25	0.692	1858	0.037	47.34
Face brick	100	1.333	2002	0.076	203.50
Face brick	100	1.333	2002	0.076	203.50
Clay tile	100	0.571	1121	0.178	113.70
low density concrete block	100	0.381	609	0.266	61.98
high density concrete block	100	0.813	977	0.125	99.06
Common brick	100	0.727	1922	0.140	195.20
high density concrete	100	1.731	2243	0.059	227.90
Clay tile	200	0.571	1121	0.352	227.90
low density concrete block	200	0.571	609	0.352	123.46
high density concrete block	200	1.038	977	0.196	198.62
Common brick	200	0.727	1922	0.279	90.40
Himgr temsity contrete	200	T.791	224	0.117	59.7
high density concrete	300	1.731	2243	0.176	683.20
high density concrete	50	1.731	2243	0.029	113.70
high density concrete	150	1.731	2243	0.088	341.60
low density concrete	100	0.173	641	0.587	64.90
low density concrete	150	0.173	641	0.880	97.60
low density concrete	200	0.173	641	1.173	130.30
low density concrete block (filled)	200	0.138	288	1.467	58.56
high density concrete block (filled)	200	0.588	849	0.345	172.75
low density concrete block (filled)	300	0.138	304	2.200	92.72
high density concrete block (filled)	300	0.675	897	0.451	273.28
Imeidorumfue mexietameor		0.000		0.121	0.00
Plaster or gypsum	20	0.727	1602	0.026	30.74
Celing air space	--	0.000	--	0.176	0.00
Asphalt Roll Roofing			1120	0.09	
Carpet and Fibrous Pad				1.20	
Carpet and Rubber Pad	25			0.71	
Ceramic Tile	7			0.05	
Concrete Tile	10	0.27	1921	0.037	23
Sand	130		1681	0.016	21
Sand	160		1681	0019	27
Cement nlaster	13		1680 arse	200.	1054
Expanded polyurethane		0.04	16		

The Wall

10 mm gypsum plaster $\mathrm{K}=0.727 \mathrm{~W} / \mathrm{m}$. K

$R_{1}=\frac{\Delta x}{K}=\frac{0.01}{0.727}=0.0137 \mathrm{~m}^{2} K / W$

$$
W_{1}=30.74 * \frac{10}{20}=15.37 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}}
$$

200 mm common brick

 $R_{2}=0.279 \mathrm{~m}^{2} \mathrm{~K} / W$$$
W_{2}=390.4 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}}
$$

13 mm cement plaster

$$
R_{3}=0.05 \frac{m^{2} K}{W}
$$

$$
W_{3}=105.6 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}}
$$

$$
\begin{aligned}
& R_{i}=\frac{1}{h_{i}}=\frac{1}{8.3}=0.1204 m^{2} K / W \quad R_{o}=\frac{1}{h_{o}}=\frac{1}{17}=0.0588 m^{2} K / W \\
& R_{t}=R_{o}+R_{1}+R_{2}+R_{3}+R_{i} \\
& R_{t}=0.1204+0.0137+0.279+0.05+0.0588= \\
& R_{t}=0.5219 \mathrm{~m}^{2} K / W \\
& U_{o}=\frac{1}{R_{t}}: \quad U_{\boldsymbol{w}}=\frac{1}{0.5219}=1.916 \mathrm{~W} / \mathrm{m}^{2} K
\end{aligned}
$$

The weight of the wall

$$
W_{t}=105.6+390.4+15.37=511.37 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}}
$$

Table 19 Properties of building materials

Description	$\begin{gathered} L \\ \mathrm{~mm} \end{gathered}$	K $W / m K$	$\stackrel{\mathrm{P}}{\mathrm{~kg} / \mathrm{m}^{3}}$	$\begin{gathered} R \\ m^{2} K / W \end{gathered}$	$\begin{aligned} & \text { Mass } \\ & \mathrm{kg} / \mathrm{m}^{2} \end{aligned}$
Outside surface resistance, Summer	---	0.000	--	0.059	0.00
Outside surface resistance, winter	---	0.000	\cdots	0.041	
Stucco	25	0.692	1858	0.037	47.34
Face brick	100	1.333	2002	0.076	203.50
Face brick	100	1.333	2002	0.076	203.50
Clay tile	100	0.571	1121	0.178	113.70
low density concrete block	100	0.381	609	0.266	61.98
high density concrete block	100	0.813	977	0.125	99.06
Common brick	100	0.727	1922	0.140	95.20
High demity		72	12	-0	
Clay tile	200	0.571	1121	0.352	227.90
low density concrete block	200	0.571	609	0.352	123.46
high density concrete block	200	1.038	977	0.196	198.62
Common brick	200	0.727	1922	0.279	390.40
high density concrete	200	1.731	2243	0.117	455.79
high density concrete	300	1.731	2243	0.176	683.20
high density concrete	50	1.731	2243	0.029	113.70
high density concrete	150	1.731	2243	0.088	341.60
low density concrete	100	0.173	641	0.587	64.90
low density concrete	150	0.173	641	0.880	97.60
low density concrete	200	0.173	641	1.173	130.30
low density concrete block (filled)	200	0.138	288	1.467	58.56
high density concrete block (filled)	200	0.588	849	0.345	172.75
low density concrete block (filled)	300	0.138	304	2.200	92.72
high density concrete block (filled)	300	0.675	897	0.451	273.28
Incidonurfaomeaciatonoon		0.675		121	0.
Plaster or gypsum	20	0.727	1602	0.026	30.74
Celing air space	---	0.000	--	0.176	0.00
Asphalt Roll Roofing			1120	0.09	
Carpet and Fibrous Pad				1.20	
Carpet and Rubber Pad	25			0.71	
Ceramic Tile	7			0.05	
Concrete Tile	10	0.27	1921	0.037	23
Sand	130		1681	0.016	21
Sand	160		1681	0.019	27
Cement plaster	13		1689As	z0.05	-1054
Expanded polyurethane		0.04	16		

The Wall (partition)

10 mm gypsum plaster

 $\mathrm{K}=0.727 \mathrm{~W} / \mathrm{m}$. K$$
\begin{aligned}
& R_{1}=\frac{\Delta x}{K}=\frac{0.01}{0.727}=0.0137 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W} \\
& W_{1}=30.74 * \frac{10}{20}=15.37 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}}
\end{aligned}
$$

100 mm common brick

 $R_{2}=0.140 \mathrm{~m}^{2} K / W$$$
W_{2}=95.20 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}}
$$

10 mm gypsum plaster
$\mathrm{K}=0.727 \mathrm{~W} / \mathrm{m}$.K
$R_{3}=\frac{\Delta x}{K}=\frac{0.01}{0.727}=0.0137 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$
$W_{3}=30.74 * \frac{10}{20}=15.37 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}}$

$$
\begin{array}{r}
R_{i}=\frac{1}{h_{i}}=\frac{1}{8.3}=0.1204 m^{2} K / W \\
R_{t}=R_{i}+R_{1}+R_{2}+R_{3}+R_{i}
\end{array}
$$

$$
R_{t}=0.1204+0.0137+0.140+0.0137+0.1204=
$$

$$
R_{t}=0.4082 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}
$$

$$
U_{o}=\frac{1}{R_{t}}: \quad U_{w}=\frac{1}{0.4082}=2.45 \mathrm{~W} / \mathrm{m}^{2} K
$$

The weight of the wall

$$
W_{t}=15.37+95.20+15.37=125.94 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}}
$$

M.Sc. Zahraa F. Hussain

Table 19 Properties of building materials

Description	$\begin{gathered} L \\ m m \end{gathered}$	$\begin{gathered} K \\ W / m K \end{gathered}$	$\underset{\left(\mathrm{pg} / \mathrm{m}^{3}\right.}{\mathrm{P}}$	$\begin{gathered} R \\ m^{2} K / W \end{gathered}$	$\begin{aligned} & \text { Mass } \\ & \mathrm{kg} / \mathrm{m}^{2} \end{aligned}$
Outside surface resistance, Summer	---	0.000	--	0.059	0.00
Outside surface resistance, winter	---	0.000	--	0.041	
Stucco	25	0.692	1858	0.037	47.34
Face brick	100	1.333	2002	0.076	203.50
Face brick	100	1.333	2002	0.076	203.50
Clay tile	100	0.571	1121	0.178	113.70
low density concrete block	100	0.381	609	0.266	61.98
high density concrete block	100	0.813	977	0.125	99.06
Common brick	100	0.727	1922	0.140	195.20
high density concrete	100	1.731	2243	0.059	227.90
Clay tile	200	0.571	1121	0.352	227.90
low density concrete block	200	0.571	609	0.352	123.46
high density concrete block	200	1.038	977	0.196	198.62
Common brick	200	0.727	1922	0.279	390.40
high density concrete	200	1.731	2243	0.117	455.79
high density concrete	300	1.731	2243	0.176	683.20
ingn uensity contrete	Jo	1.751	2245	0.029	113./0
high density concrete	150	1.731	2243	0.088	341.60
-10w dumity contrie	+100	-0.179	6	0..s)	$8+9.9$
low density concrete	150	0.173	641	0.880	97.60
low density concrete	200	0.173	641	1.173	130.30
low density concrete block (filled)	200	0.138	288	1.467	58.56
high density concrete block (filled)	200	0.588	849	0.345	172.75
low density concrete block (filled)	300	0.138	304	2.200	92.72
high density concrete block (filled)	300	0.675	897	0.451	273.28
Inside surface resistance	---	0.000	--	0.121	0.00
Plaster or gypsum	20	0.727	1602	0.026	30.74
Celling air space	--	0.000	--	0.176	0.00
Asphalt Roll Roofing			1120	0.09	
Carpet and Fibrous Pad				1.20	
Carpet and Rubber Pad	25			0.71	
Ceramic Tile	7			0.05	
Concrete Tile	10	0.27	1921	0.037	23
Sand	130		1681	0.016	21
Sand	160		1681	0.019	27
Cement plaster	13		1680	0.05	[105.6
Expanded polyurethane		0.04	16ivisc.	zamina	- n ussam

The Roof

10 mm concrete tail

$$
R_{1}=0.037 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}
$$

$W_{1}=23 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}}$

130 mm sand

$R_{2}=0.016 \mathrm{~m}^{2} K / W$
$W_{2}=21 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}}$
10 mm Expanded polyurethane

$$
R_{3}=\frac{\Delta x}{K}=\frac{0.01}{0.04}=0.25 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}
$$

Asphalt shingles

$$
R_{4}=0.09 m^{2} K / W
$$

150 mm concrete

$$
R_{5}=0.088 \mathrm{~m}^{2} K / W
$$

$W_{5}=341.6 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}}$
20 mm gypsum plaster
$R_{6}=0.026 \mathrm{~m}^{2} K / W$
$W_{6}=30.74 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}}$

$$
\begin{aligned}
& R_{o}=\frac{1}{h_{o}}=\frac{1}{17}=0.0588 m^{2} K / W \quad R_{i}=\frac{1}{h_{i}}=\frac{1}{8.3}=0.1204 m^{2} K / W \\
& R_{t}=\mathbf{R}_{0}+\mathbf{R}_{1}+\mathbf{R}_{2}+\mathbf{R}_{3}+\mathbf{R}_{4}+\mathbf{R}_{5}+\mathbf{R}_{6}+R_{i}
\end{aligned}
$$

$R_{r}=0.1204+0.037+0.016+0.25+0.09+0.088+0.026+0.0588=$ $R_{t}=0.6862 \mathrm{~m}^{2} K / W$
$U_{o}=\frac{1}{R_{t}}: \quad \boldsymbol{U}_{\boldsymbol{r}}=\frac{\mathbf{1}}{\mathbf{0 . 6 8 6 2}}=1.457 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$

The weight of the Roof

$W_{t}=23+21+341.6+30.74=416.34 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}}$

Outer wall		Partition	Roof		Windo \mathbf{W}	Door
U	W	U	U	W	U	U
$\mathrm{W} / \mathrm{m}^{2} . \mathrm{K}$	$\mathrm{kg} / \mathrm{m}^{2}$	$\mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}$	$\mathrm{W} / \mathrm{m}^{2} . \mathrm{K}$	$\mathrm{kg} / \mathrm{m}^{2}$	$\mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}$	$\mathrm{W} / \mathrm{m}^{2} . \mathrm{K}$
1.916	511	2.45	1.457	416	6.42	3.92

Msc. Zahraa F. Hussain

Area of Building

Room name	Net area of outer Walls (\mathbf{m}^{2})				Windows					Floor$\left(\mathbf{m}^{2}\right)$	Roof (m^{2})	Partition
	W	E	\mathbf{N}	S	W	E	\mathbf{N}	S	Door			
Bed R1	17.4	-	-	-	3.6	-	-	-	2.1	50.75	50.75	18.9
Living room	12.9	-	20.55		3.6	-	-	-	4.2	45.38	45.34	16.5
Bed R2	-	10.8	-	8.55	-	2.7	-	2.7	2.1	16.88	16.88	11.4
Bed R3	-	10.8		-		2.7			2.1	16.88	16.88	$\begin{aligned} & 11.4 \\ & 11.25 \end{aligned}$
Kitchen	-	13.44	11.25	-	-	$\begin{gathered} 2.7 \\ 0.36 \end{gathered}$			-	20.63	20.63	11.25

Appliance \& Lights \& People

Appliances

	People	Lights		appliances			
applications							
Bed R1	2	120					
Living R	4	480		TV	Pc	Print.	coffe
Bed R2	1	120					
Bed R3	1	120					
Corridor							
Kitchen		480					

The outside design conditions for summer is $45^{\circ} \mathrm{C}$ DBT and 15% RH with daily range of $18.7^{\circ} \mathrm{C}, 1.5^{\circ} \mathrm{C}$ and $84 \% \mathrm{RH}$ for winter.

Equivalent temperature difference:

To calculate the equivalent temperature difference for any wall or roof at any orientation, the following procedures must be considered:
This sample of calculation is for West wall

No		W	N	E	S	H
1	Calculate the weight of wall or roof per m²	511.37	511.37	511.37	511.37	416
2	Select the equivalent temperature difference (T15)	5.6	1.7	11.1	8.3	15.6
3	Select the outdoor design conditions for summer(T1)	45	45	45	45	45
4	Select the outdoor design conditions for winter(T1)	1.5	1.5	1.5	1.5	1.5
5	Find the yearly range	45-1.5	43.5	43.5	43.5	43.5
6	Find the daily range (Table 1)	18.7	18.7	18.7	18.7	18.7
7	Find the difference between (outdoor design condition for month at 3P.M.)	45-25	20	20	20	20
8	Find the correction of equivalent temp. diff. (T16A)	7.2	7.2	7.2	7.2	7.2
9	Find the equivalent temperature difference for wall or roof exposed to the sun (Dtem) (Step 8+step 2)	$\begin{aligned} & 5.6+7.2 \\ & =12.8 \end{aligned}$	8.9	18.3	15.5	22.8
10	Find equivalent temperature difference for same wall or roof in shade (DTes)(T15+step 8)	$\begin{aligned} & 1.7+7.2-2 \\ & =8.9 \end{aligned}$	8.9	8.9	8.9	8.9
11	Find the maximum solar radiation maximum solar heat gain through glass for wall (Rs) (T12A)	517	69	517	95	776
12	Find the maximum solar heat gain through glass for wall facing or horizontal for roofs, for July atli40. 太minta latitud (Rm) T12B)	$\begin{gathered} 511 \\ \text { F. Hussain } \end{gathered}$	44	511	322	675

- Equivalent temperature difference for West wall \& Roof
1 Calculate the weight of wall or roof per m_{2} 511
2 Select the equivalent temperature difference (T15) 5.6
3 Select the outdoor design conditions for summer 45
4 Select the outdoor design conditions for winter 1.5
5 Find the yearly range 43.5
$6 \quad$ Find the daily range (Table 1) 18.7
7 Find the difference between (outdoor design condition for month at 3P.M.) 20
8 Find the correction of equivalent temp. diff. 7.2
Find the equivalent temperature difference for wall or roof exposed to the sun
(Dtem)12.8
10 Find equivalent temperature difference for same wall or roof in shade (DTes) 8.9
Find the maximum solar radiation maximum solar heat gain through glass for wall11 (Rs)517
Find the maximum solar heat gain through glass for wall facing or horizontal for
12 roofs, for July at 40 North latitud (Rm) 511
$\Delta \mathrm{t}_{\mathrm{e}}=0.78 \frac{\mathbf{R}_{\mathrm{s}}}{\mathbf{R}_{\mathrm{m}}} . \Delta \mathrm{t}_{\mathrm{em}}+(1-0.78) \frac{\mathbf{R}_{\mathrm{s}}}{\mathbf{R}_{\mathrm{m}}} . \Delta \mathrm{t}_{\mathrm{es}}$
for west wall

$$
\Delta t_{\mathrm{e}}=0.78 \frac{517}{511} \cdot 12.8+(1-0.78) \frac{517}{511} \cdot 8.9=12.08
$$

for roof

$$
\Delta \mathrm{t}_{\mathrm{e}}=0.78 \frac{776}{675} \cdot 22.8+(\mathbb{1}-0.78) \frac{776}{675} \cdot 8.9=22.7
$$

Bedroom1

Partition wall
5W1

Bedroom1

Solar Heat gain Glass

	$=U$	$U \quad A_{g / d} \quad \square^{\left(T_{o}-T_{i}\right)}$			
			Outdoor, indoor		
			Window or door area	m^{2}	
			Glass heat transfer coefficient	$\mathrm{W} / \mathrm{m}^{20} \mathrm{C}$	T(20)
			Solar transmission window and door	W	

Solar and transmission heat gain glass

$Q_{s / g}=\operatorname{SolHG} A_{g} F$
$Q_{t / g}=U A_{g / d}\left(T_{o}-T_{i}\right)$

Table (12A) Solar Irradiance (EDN) and Solar Heat Gain Factors (SHGF) for

 32° North Latitude| Time of Year | Exposure | 6 | 7 | 8 | 9 | 10 | 11 | Noon | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| JULY 23
 MAY 21 | N | 69 | 63 | 44 | 41 | 44 | 44 | 44 | 44 | 44 | 41 | 44 | 63 | 69 |
| | NE | 293 | 413 | 388 | 281 | 145 | 50 | 44 | 44 | 44 | 41 | 38 | 28 | 13 |
| | E | 315 | 489 | 517 | 457 | 312 | 139 | 44 | 44 | 44 | 41 | 38 | 28 | 13 |
| | SE | 132 | 259 | 315 | 315 | 262 | 167 | 69 | 44 | 44 | 41 | 38 | 28 | 13 |
| | S | 13 | 28 | 38 | 44 | 63 | 85 | 95 | 85 | 63 | 44 | 38 | 28 | 13 |
| | SW | 13 | 28 | 38 | 41 | 13 | 44 | 44 | 167 | 262 | 315 | 315 | 259 | 132 |
| | W | 13 | 28 | 38 | 41 | 44 | 44 | 44 | 139 | 312 | 457 | 517 | 489 | 315 |
| | NW | 13 | 28 | 38 | 41 | 44 | 44 | 44 | 50 | 145 | 281 | 388 | 413 | 293 |
| | Horizontal | 47 | 208 | 388 | 555 | 675 | 744 | 776 | 744 | 675 | 555 | 388 | 208 | 47 |
| AUG 24 | N | 19 | 25 | 35 | 41 | 41 | 44 | 44 | 44 | 41 | 41 | 35 | 25 | 19 |
| | NE | 174 | 341 | 315 | 208 | 85 | 44 | 44 | 44 | 41 | 41 | 35 | 25 | 6 |
| | E | 208 | 464 | 521 | 467 | 322 | 145 | 44 | 44 | 41 | 41 | 35 | 25 | 6 |
| APR 20 | SE | 0 | 309 | 495 | 407 | 353 | 259 | 123 | 47 | 57 | 41 | 35 | 25 | 6 |
| | S | 6 | 25 | 41 | 85 | 148 | 183 | 199 | 183 | 148 | 85 | 41 | 25 | 6 |
| | SW | 6 | 25 | 35 | 41 | 41 | 47 | 123 | 259 | 353 | 407 | 401 | 309 | 117 |
| | W | 6 | 25 | 35 | 41 | 41 | 44 | 44 | 145 | 322 | 467 | 521 | 464 | 208 |
| | NW | 6 | 16 | 35 | 41 | 41 | 44 | 44 | 44 | 85 | 208 | 315 | 325 | 174 |
| | Horizontal | 19 | 148 | 338 | 508 | 631 | 710 | 741 | 710 | 631 | 508 | 338 | 148 | 19 |

West= $467 \mathrm{~W} / \mathrm{m} 2$

TABLE 20-TRANSMISSION COEFFICIENT U-WINDOWS, SKYLIGHTS, DOORS \& GLASS BLOCK WALLS W/m2 ${ }^{\circ} \mathrm{C}$

	Vertical Glass						Horizontal Glass				
	Single	Double			Triple			Single		Double (6mm)	
Air Space Thickness (in.)	0	6	13	$19-$ 25	6	13	$19-$ 25	Summer	Winter	Summer	Winter
Without Storm Windows	6.42	3.46	3.12	3.01	2.33	2.04	1.93	4.88	7.95	2.84	3.98
With Sterm Windows	3.07							2.44	3.64		

		Solar Gain windows								
	Eq	Q	=	SolHG.		A		F		
$\begin{aligned} & \mathbf{Q} \\ & \mathbf{0} \\ & \boldsymbol{\Omega} \end{aligned}$		W/ window	$=$	467	\times	3.6	\times	1.7	$=$	2858.04
	1	N/ window	=		\times		\times		=	0
		S/ window	=		\times		\times		=	0
		E/ window	$=$		\times		\times		$=$	0
	Transmission windows									
	2	Q	$=$	(U) $\mathrm{W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$		A		ΔT	=	
		Q_window	$=$	6.42	\times	3.6	\times	20	$=$	462.24

Outer Wall \& Exposed Roof \& Partition

3- Solar and Transmission Gain- Walls

Solar and Transmission Gain Roofs and Floors
A- Exposed Roof
The exposed roof subjected to the outdoor conditions and solar radiation, so the equivalent temperature difference is used to calculate the heat flow to the building through the roof.

Msc. Zahraa F. Hussain

Outer Wall \& Exposed Roof \& Partition

$$
\begin{array}{ll}
Q_{w}=U_{w} A_{w} \cdot \Delta t_{e} & \text { for outer wall } \\
Q_{r}=U_{r} A_{r} \cdot \Delta t_{e} \quad \text { for Roof } \\
Q_{t / p}=U A_{p}\left(T_{o}-T_{i}-9\right) \quad \text { for partition }
\end{array}
$$

	Solar and Transmission Gain									
$\begin{aligned} & \sum_{0}^{2} \\ & 00 \\ & \vdots 0 \\ & 70 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		Q	=	(U) W/m ${ }^{2}{ }^{\circ} \mathrm{C}$		A	x	ΔT_{e}		
		W/Wall	=	1.916	\times	17.4	\times	12.08	=	402.728
	3	/Wall	=		\times		\times		=	0
		/Wall	=		\times		\times		=	0
		/Wall	=		\times		\times		=	0
		Roof	=	1.457	\times	50.75	\times	22.7	=	1678.5
		Floor	$=$		\times		\times		=	0
	5	Partitions	$=$	2.45	\times	21.75	\times	11	$=$	586.163

6a. Sensible Heat Gain

6.b Latent Heat gain

Appliances: No appliance in bed room 1
Lights. Assume 480 W for the kitchen, and 480 W for living room, assign 50\% to bed room 1, 25\% for bedrooms 2 and 3

Msc. Zahraa F. Hussain

TABLE 26 -HEAT GAIN FROM PEOPI F

Degree of Activity		$\begin{gathered} \text { Total Heat, } \\ \text { W } \end{gathered}$		Sensi ble Heat,	Late nt Hea t,	\% Sensible Heatthat is	
		$\begin{aligned} & \hline \text { Ad } \\ & \text { ult } \end{aligned}$	Adjust ed,			Radiant	
		Mal e	M/Fa	W	W	Low V	High V
Seated at theatre	Theatre, matinee	115	95	65	30		
Seated at theatre, night	Theatre, night	115	105	70	35	60	27
Seated, very light work	Offices, hotels, apartments	130	115	70	45		
Moderately active office work	Offices, hotels, apartments	140	130	75	55		
Standing, light work; walking	Department store; retail store	160	130	75	55	58	38
Walking, standing	Drug store, bank	160	145	75	70		
Sedentary work	Restaurant	145	160	80	80		
Light bench work	Factory	235	220	80	140		
Moderate dancing	Dance hall	265	250	90	160	49	35
Walking $4.8 \mathrm{~km} / \mathrm{h}$; light machine work	Factory	295	295	110	185		
Bowling	Bowling alley	440	425	170	255		
Heavy work	Factory	440	425	170	255	54	19
Heavy machine work; lifting	Factory	470	470	185	285		
Athletics	Gymnasium	585	525	210	315		

						at Ga				
$\begin{aligned} & \text { D } \\ & \text { D } \\ & \mathbf{O} \\ & \hline \mathbf{D} \end{aligned}$		Q	=	Nos.		SenHG		F	=	
	6a	Sensible	$=$	2	\times	75	\times	1	=	150
	6b	Latent	$=$	2	\times	55	\times	1	=	110
$\begin{aligned} & \text { P } \\ & \hline 0 \\ & \hline \end{aligned}$	8a	Sensible	=		\times		\times		=	0
	8b	Latent	=		\times		\times		=	0
$\frac{\Gamma}{0 \cdot}$	7			m^{2}		W		F		
		Light	=	1	\times	240	\times	1.25	=	300
				Nos.		W				
	9	Elec. motor	$=$		\times		\times		=	0

Infiltration

ii- Depending on the crack length L_{C}
Depends on figure 6, for single hung window or door, crack length can be calculated as follows:
$\mathrm{L}_{\mathrm{C}}=2 .(\mathrm{H}+\mathrm{W})$
While for double hung window or door
$\mathrm{LC}=2 .(\mathrm{H}+\mathrm{W})+\mathrm{H}$

IOA		V			$\mathrm{T}(24)$
			Volume flow rate/ m	Lit/s per Person	
			Number of window and doors	-	
			Outdoor air	Lit/s	

- Fenestration. Clear single glass, 3 mm thick. Assume closed, medium-color well fitted, aluminum frame.

Depending on the crack length LC

- Single hung window or door in Bedroom1

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{C}}=2 .(\mathrm{H}+\mathrm{W}) \\
& \left.\boldsymbol{L}_{\boldsymbol{c}}=\mathbf{2 (0 . 6 + 1}\right)=\mathbf{3 . 2}
\end{aligned}
$$

TABLE 24a-DOUBLE HUNG WINDOWS-UN LOCKED ON WINDWARD SIDE

Type of Double Hung Window	Lit/s per meter of Crack length											
	Wind Velocity m/s											
	1.4		2.8		4.2		5.6		7		8.4	
	No WStrip	$\begin{gathered} \mathrm{W}- \\ \mathrm{Stri} \\ \mathrm{p} \end{gathered}$	No WStrip	$\begin{gathered} \text { W } \left.\begin{array}{c} \text { Stri } \\ p \end{array}\right) \end{gathered}$	No WStrip	$\begin{gathered} \mathrm{W}- \\ \mathrm{Stri} \\ \mathrm{p} \end{gathered}$	No WStrip	$\begin{gathered} \mathrm{W}- \\ \text { Stri } \\ \mathrm{p} \end{gathered}$	No WStrip	$\begin{gathered} \mathrm{W}- \\ \text { Stri } \\ \mathrm{p} \end{gathered}$	No W Strip	$\begin{aligned} & \text { W- } \\ & \text { Stri } \\ & \text { p } \end{aligned}$
Wood Sash												
Average Window	0.2	0.1	0.5	0.3	1.0	0.6	1.5	0.9	2.1	1.3	2.7	1.6
Poorly Fitted Window	0.7	0.2	1.8	0.5	2.9	0.9	4.0	1.3	5.1	0.3	6.5	2.4
Poorly Fitted-with Storm Sash	0.4	0.1	0.9	0.2	1.4	0.5	2.0	0.7	2.5	0.9	3.3	1.2
Metal Sash	0.5	0.2	1.2	0.5	1.9	0.8	2.7	1.2	3.6	1.6	4.4	2.0

Volume flow rate /per meter $=0.3$ lit/s per meter

6- Ventilation (W3):

i- Outdoor air ventilation depending on the number of people:

ii- Outdoor air ventilation depending on the floor area

V	A.	R_{a}			
			Volume flow rate/person	Lit/s per m ${ }^{2}$	T (25)
			Floor area	m^{2}	
			Outdoor air	Lit/s	

TABLE 25-VENTILATION STANDARDS

Space type	$\begin{aligned} & \text { Rp } \\ & \text { (L/s- } \\ & \text { per) } \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & \text { (L/s- } \\ & \mathrm{m} 2) \\ & \hline \end{aligned}$	Space type	Rp (L/sper)	Ra (L/sm 2)
Art classroom	5	0.9	Legislative chambers	2.5	0.3
Auditorium seating area	2.5	0.3	Libraries	2.5	0.6
Bank vaults/safe deposit	2.5	0.3	Lobbies	2.5	0.3
Barber shop	7.5	0.3	Lobbies/perfection	3.8	0.3
Barracks sleeping areas	2.5	0.3	Main entry lobbies	2.5	0.3
Bars, cocktail lounges	3.8	0.9	Mall common areas	3.8	0.3
Beauty and nail salons	10	0.6	Media Centre	5	0.6
Bedroom/Living_Room	2.5	0.3	Multi-purpose assembly	2.5	0.3
Booking/waiting	3.8	0.3	Multi-use Assembly	3.8	0.3
Bowling alley (seating)	5	0.6	Museums (Children's)	3.8	0.6
Cafeteria / fast food dining	3.8	0.9	Museums/Galleries	3.8	0.3
Cell	2.5	0.6	Music/theatre/dance	5	0.3
Classrooms (age 9 plus)	5	0.6	Office space	2.5	0.3
Classrooms (ages 5-8)	5	0.6	Pet shops (animal areas)	3.8	0.9
Coin operated laundries	3.8	0.3	Pharmacy (prep. area)	2.5	0.9
Computer (not printing)	2.5	0.3	Photo studios	2.5	0.6
Computer Lab.	5	0.6	Places of religious worship	2.5	0.3
Conference / meeting	2.5	0.3	Reception areas	2.5	0.3
Corridors	0	0.3	Restaurant dining rooms	3.8	0.9
Courtrooms	2.5	0.3	Sales (except as below)	3.8	0.6
Day care (through age 4)	5	0.9	Science laboratories	5	0.9
Dayroom	2.5	0.3	Shipping/Receiving	0	0.6
Disco/dance floors	10	0.3	Spectator areas	3.8	0.3
Gambling casinos	3.8	0.9	Sports arena (play area)	0	0.3
Game arcades	3.8	0.9	Stages, studios	5	0.3
Guard stations	2.5	0.3	Storage rooms	0	0.6
Gym, stadium (play area)	0	0.3	Supermarket	3.8	0.3
Health club/aerobics room	10	0.3	Swimming (pool \& deck)	0	2.4
Health club/weight rooms	10	0.3	Telephone/data entry	2.5	0.3
Lecture Classroom	3.8	0.3	Transportation waiting	3.8	0.3
Lecture Hall (fixed seats)	3.8	0.3	Warehouses	0	0.3
Kitchen/ restaurant		4	Wood/metal shop	5	0.9
Kitchen/ residence		2	Toilet		2

		LC	$=$	Nos.	x	fac (L	+	H)	+	H	
	10	Lc		1		210.6	+	1)	$+$	0	3.2
		IOA	$=$	3.2	\times	0.3			=		0.96
	11	V	$=$	2	x	2.5		1	=		5
		VOA	$=$	$\begin{aligned} & \hline 0.95 \\ & \mathrm{Lit} / \mathrm{s} \\ & \hline \end{aligned}$	+	5			=		5.96
		OASH	=	F	x	VOA	x	ΔT	=		
	11a	OASH	$=$	1.21	\times	5.96	\times	20	$=$		144.23
	11b	OALH	$=$	3000	\times	5.96	\times	0.001	=		17.88
	11c	OATH	$=$	OASH	+	OALH	$=$		=		162.11

Room load

11-ROOM SENSIBLE HEAT

RSH

$$
R S H=\sum \text { equs. }(1,2,3,4,5,6 a, 7,8 a, 9)
$$

12- ROOMLATENT HEAT
$\underset{\boldsymbol{R L H}}{\sim}=\sum$ equs. $(6 b, 8 b)$
13- ROOM TOTAL HEAT
RTH
RTH $=$ RSH + RLH

11	RSH	$=$	Sum all equations(Sensible heat)	+		$=$	6137.67
12	RLH	$=$	Sum all equations(Latent heat)	+		$=$	110
13	RTH	$=$	RSH	+	RLH	$=$	6247.67

14- TOTAL SENSIBLE HEAT TSH $=$ RSH $+($ OASH (eques. 10 a and 11a) $)$

15- TOTAL LATENT HEAT

TLH

TLH $=$ RLH $+($ OALH(eques. 10 b and 11 b$))$
16- GRANG TOTAL HEAT
GTH
GTH $=$ TSH + TLH

14	TSH	$=$	RSH	+	OASH	$=$	$\mathbf{6 2 8 1 . 9}$
15	TLH	$=$	RLH	+	OALH	$=$	$\mathbf{1 2 7 . 8 8}$
16	GTH	$=$	TSH	+	TLH	$=$	$\mathbf{6 4 0 9 . 7 8}$

Room load $=\frac{G T H(k W)}{3.5}=\frac{6.40978}{3.5}=(1.9) \mathrm{TR} \cong 2 \mathrm{TR}$

