Al-Mustaqbal University College

1.2 Composition \& Resolution of Forces

Composition is the process of replacing a force system by its resultant.
a. Parallelogram Law

b. Triangle Law

The resultant of a pair of concurrent forces can be determined by:
$R=\sqrt{{F_{1}}^{2}+{F_{2}}^{2}-2 F_{1} F_{2} \cos \theta}$
Also, it can be found the direction of R or unknown one of forces by:
$\frac{R}{\sin \theta}=\frac{F_{1}}{\sin \beta}=\frac{F_{2}}{\sin \alpha}$

Resolution is the process of replacing a single force by its components.

If a force (F) lies in the $x-y$ plane. The force (F) may be resolved into two rectangular components. The component of a force parallel to the x-axis is called the Horizontal component $(F x)$, and parallel to y-axis the is called Vertical component (Fy).

For Example:

$\cos \theta=\frac{F x}{F} \rightarrow F x=F \cos \theta \rightarrow$
$\sin \theta=\frac{F y}{F} \rightarrow F y=F \sin \theta \quad \uparrow$

$F=\sqrt{F x^{2}+F y^{2}}$
$\theta_{x}=\tan ^{-1}\left(\frac{F y}{F x}\right)$

The direction of \boldsymbol{F} can also be defined using a small "slope" triangle. Given the slope of the line of action of the force as

$$
c=\sqrt{a^{2}+b^{2}}
$$

$F x=F \cos \theta \quad \rightarrow \quad F x=F \cdot \frac{a}{c} \rightarrow$

$$
F y=F \sin \theta \quad \rightarrow \quad F y=F \cdot \frac{b}{c} \uparrow
$$

$$
F \bar{x}=F \cos \bar{\theta}
$$

$$
F \bar{y}=F \sin \bar{\theta}
$$

Example No. 1: Two forces are applied at the point A of a hook support as shown in Figure. Determine the magnitude and direction of the resultant force by using (i) parallelogram law, and (ii) triangle law.

Solution:

i. Parallelogram law
$F_{1}=25 N, \quad F_{2}=60 \mathrm{~N}$
$\theta=70+55=125^{\circ}$
To find the value of resultant:
$R=\sqrt{{F_{1}}^{2}+{F_{2}}^{2}-2 F_{1} F_{2} \cos \theta}$

$R=\sqrt{25^{2}+60^{2}-2 \times 25 \times 60 \times \cos 125}=77.11 \mathrm{~N}$
To find the direction of resultant:
$\frac{R}{\sin \theta}=\frac{F_{2}}{\sin \alpha}$
$\frac{77.11}{\sin 125}=\frac{60}{\sin \alpha} \rightarrow \sin \alpha=\frac{60 \times \sin 125}{77.11}=0.637$
$\alpha=\sin ^{-1} 0.637=39.597^{\circ}$

The direction of R from the vertical axis $=39.597-35=4.597^{\circ}$
ii. Triangle Law
by the same above equations to get:
$R=77.11 N$ inclined 4.597° with vertical direction

