

Department of Air Conditioning and Refrigeration Engineering Technology

Class: 2nd Subject:Thermodynamics Assistant. Lecturer: Atheer Saleh E-mail: <u>AtheerSaleh@mustaqbal-</u> <u>college.edu.iq</u>

Lect.No.3

Process Using Steam

 $Q - W = \Delta U$ $W = Q - \Delta U \rightarrow W = T * (S2 - S1) - m * (u2 - u1)$

Lect.No.3

B- Constant Pressure process or isobaric process

$$\frac{V}{T} = C \rightarrow \frac{V_1}{V_2} = \frac{T_1}{T_2}$$

$$W = \int_1^2 P dV = P(V_2 - V_1) \rightarrow W = m * R * (T_2 - T_1)$$

$$Q - W = \Delta U$$

$$Q = \Delta U + W$$

$$Q = m * CV * (T_2 - T_1) + m * R * (T_2 - T_1)$$

$$Q = m * (T_2 - T_1) * (CV + R)$$

$$R = CP - CV \rightarrow CP = CV + R$$

$$H. W: \text{ prove that } \rightarrow Q = m * R * (T_2 - T_1) \left[\frac{1}{\gamma - 1} + 1\right]$$

IF we have Steam $W = P(V_2 - V_1)$ $Q - W = \Delta U \rightarrow Q = \Delta U + W \rightarrow Q = (U_2 - U_1) + (P_2 \times V_2 - P_1 \times V_1)$ $Q = (P_2V_2 + U_2) - (P_1V_1 + U_1)$

 $Q = (H_2 - H_1)$

Thermodynamics /2nd StageBy: ATHEER SALEHLect.No.3

Example: A cylinder fitted with a piston has a volume of $0.1m^3$ and contains 0.5 kg of steam at 0.4 MPa. Heat is transfer to the steam until the temperature is 300°C, while the pressure remain constant . Determine the heat transfer and work done.

Sol: $Q = W + \Delta U = m(h_2 - h_1)$ P=C $v = \frac{V}{m} = \frac{0.1}{0.5} = 0.2 m^3 / kg$ 2 Point 1 At 0.4 MPa $vg = 0.4625m^3 / kg$ Since v < vg then wet steam $v = v_f + x_v r_{fg} \rightarrow 0.2 = 1.084 \times 10^{-3} + x(0.4625 - 1.084 \times 10^{-3}) \Rightarrow x = 0.431$ $u_1 = 604.22 + 0.431 \times 1948.9 = 1444 \ kJ/kg$ $h_1 = 604.66 + 0.431 \times 2133.4 = 1525 \ kJ / kg$ Point 2 At $P_2 = 0.4MPa$; $T_2 = 400$ °C; $T_{sat} = 143.61$ °C < T_2 Superheated $\therefore u_2 = 2805.1 \frac{kJ}{ka}$; $h_2 = 3067.1 \frac{kJ}{ka}$ $\Delta U = m * (u_2 - u_1) = 0.5 * (2805.1 - 1444) = 680.6 \, kJ$ $Q = m * (h_2 - h_1) = 0.5 * (3067.1 - 1525) = 771.1 \, kJ$ $\rightarrow W = Q - \Delta U = 771.1 - 680.6 = 90.5 \, kJ$

TABLE A-5

Saturated water-Pressure table

Press., P kPa	Sat. temp.,	Specific volume, m³/kg		Internal energy, kJ/kg			Enthalpy, kJ/kg			Entropy, kJ/kg - K		
		Sat. liquid,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor, h.	Sat. liquid,	Evap.,	Sat. vapor, s.
	1.040	(7) (1)			-74 	-78 - 1925 - 1935 -	19			.77		
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7	0.1059	8.8690	8.9749
1.5	13.02	0.001001	81.994	34.686	2338.1	2392.8	34.688	2470.1	2524.7	0.1956	8.6314	8.8270
2.0	17.50	0.001001	66.990	/3.431	2325.5	2398.9	/3.433	2459.5	2532.9	0.2606	8.4621	8.7227
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4	0.3118	8.3302	8.6421
3.0	29.08	0.001003	43.004	100.98	2306.9	2407.9	100.98	2,4,4.3.9	2044.8	0.3043	0.2222	0.0/00
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7	0.4224	8.0510	8.4734
5.0	32.87	0.001005	28.185	137.75	2282.1	2419.8	137.75	2423.0	2560.7	0.4762	7.9176	8.3938
7.5	40.29	0.001008	19.233	168.74	2261.1	2429.8	168.75	2405.3	2574.0	0.5763	7.6738	8.2501
10	45.81	0.001010	14.670	191.79	2245.4	2437.2	191.81	2392.1	2583.9	0.6492	7.4996	8.1488
15	53.97	0.001014	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3	0.7549	7.2522	8.0071
20	60.06	0.001017	7.6481	251.40	2204.6	2456.0	251.42	2357.5	2608.9	0.8320	7.0752	7.9073
25	64.96	0.001020	6.2034	271.93	2190.4	2462.4	271.96	2345.5	2617.5	0.8932	6,9370	7.8302
30	69.09	0.001022	5 2287	289.24	2178 5	2467.7	289 27	2335.3	2624.6	0.9441	6 8234	7.7675
40	75.86	0.001026	3,9933	317.58	2158.8	2476.3	317.62	2318.4	2636.1	1.0261	6.6430	7.6691
50	81.32	0.001030	3.2403	340.49	2142.7	2483.2	340.54	2304.7	2645.2	1.0912	6.5019	7.5931
75	91.76	0.001037	2 21 72	384 36	2111.8	2496.1	384.44	2278.0	2662.4	1 2132	6 2426	7 4558
100	99.61	0.001043	1 6941	417.40	2088.2	2505.6	417.51	2257.5	2675.0	1 3028	6.0552	7 3589
101.325	99.97	0.001043	6734	418 95	2087.0	2506.0	419.06	2256 5	2675.6	1.3069	6.0476	7.3545
125	105.97	0.001048	1 3750	444 23	2068.8	2513.0	444 36	2240.5	2684.9	1 3741	5 9100	7 2841
150	111.35	0.001053	1.1594	466.97	2052.3	2519.2	467.13	2226.0	2693.1	1.4337	5.7894	7.2231
175	116.04	0.001057	1.0037	486.82	2037.7	2524.5	487.01	2213.1	2700.Z	1,4850	5.6865	7.1716
200	120.21	0.001061	0.88578	504.50	2024.6	2529.1	504.71	2201.6	2706.3	1.5302	5,5968	7.1270
225	123.97	0.001064	0 79329	520.47	2012.7	2533.2	520.71	2191.0	2711.7	1.5705	5 5171	7 0877
250	127.41	0.001067	0 7 873	535.08	2001.8	2536.8	535 35	2181.2	2716.5	1 6072	5 4453	7.0525
275	130.58	0.001070	0.66732	548.57	1991.6	2540.1	548.86	2172.0	2720.9	1.6408	5.3800	7.0207
300	133.52	0.001073	0 60582	561.11	1082.1	2543.2	551.43	2163.5	2724 Q	1 6717	5 3200	6 0017
325	136.27	0.001076	0.55199	572.84	1973 1	2545.9	573.19	2155.4	2728.5	1,7005	5 2645	6.5.050
350	138.86	0.001079	4 59422	E03 00	1964.6	25/8 5	584.26	21077	2732 0	1 7274	5 2128	5 0 00
375	141.30	0.001094	0 0123	* 7	1056.6	2550.0	504.23	21/0 /	2735 1	1 7576	5 16/5	6 72
400	143.61	0.001084	0.46242	Vg	10/8 G	2553.1	604.66	2123 4	2738.1	1.7765	5 1101	6 8066
			And the second second second		1.240.3	C. C. Strandbard V. S. C.	and the stand	an anna state	100,000,00	1. S. S. S. S. S. S.		Charles Carly

C- Constant Volume process or isochoric process

$$\frac{P}{T} = C \rightarrow \frac{P_1}{P_2} = \frac{T_1}{T_2}$$

$$W = \int_{1}^{2} P dV \to V = C \to dV = 0 \to W = 0$$

For Perfect gas $\Delta U = CV * (T_2 - T_1)$ $Q - W = \Delta U$ $Q = \Delta U$

For Steam $\rightarrow Q = m * (u_2 - u_1)$

Thermodynamics /2nd Stage

By: ATHEER SALEH

Lect.No.3

D- Polytropic process

Polytropie :- n=2 & pvn=c consult to or I work and I. Pi Vinz P2 V2 $\begin{array}{c} \frac{P_{e}}{P_{1}} = \left(\frac{V_{1}}{V_{2}}\right)^{n} \\ & \overline{P_{1}} = \left(\frac{V_{1}}{V_{2}}\right)^{n-1} \\ & \overline{P_{1}} = \left(\frac{V_{1}}{V_{2}}\right)^{n-1} \\ & \overline{P_{1}} = \left(\frac{V_{1}}{V_{2}}\right)^{n-1} \\ & \overline{P_{1}} = \left(\frac{P_{1}}{P_{1}}\right)^{n-1} \\ & \overline{P_{1}} = \left(\frac{P_{1}}{P_{1}}\right)^{n-1} \end{array}$ Wirz = Spair () W1-2 3 Pivi - P2V2 5 MR (T1-F2) @ Heat interaction Q-W= DU Q = DU +W jda = jdv + jdw oR man anonealth Ty $Q_{1-2} = (V_2 - V_1) + \frac{P_1 V_1 - P_2 V_2}{N-1}$ Q1-2 = MCV AT + MR(T.-T2) N-1 But -> ev = R -> R = ev 68-C

2-WEDU 7= RN(T2-T1) + B(T1-T1) ta yoku = Re= 8 cor - cu CHE RI $7 = \frac{R}{K_{1}}(T_{2}-T_{1}) + \frac{R}{n_{1}}(T_{1}-T_{2})$ $q = R(T_1 - T_2) \begin{bmatrix} -(n-1) + (t-1) \\ (n-1)(x-1) \end{bmatrix}$ 9= R(T.-T.) 1+ - - + + 9= TV × 8-17

Thermodynamics /2nd Stage

By: ATHEER SALEH

Lect.No.3

واجب E-Adiabatic process

